全球LTE智能手机的出货量、网络配置以及频谱分配如今迅猛增长,而3GPP电信标准组织也已为LTE标准分配超过40个频段。随着用户数和通信量 的负荷持续加重,诸如AT&T(美)和Verizon(美)的主要电信商开始采用LTE-Advanced 载波聚合 (Carrier Aggregation)技术以提升网络的速度和容量。3GPP现今已确定愈60种频带组合,其中包括频带内和频带间聚合。正因如此,智能手机需要优化技术以适应持续增加的频谱分配方案和载波聚合的可能性。对手机内的LTE射频而言,这意味着射频必须能够“调”这些频带当中的任何一个,而这进一步要求该天线需要在所有频带上保持高效率表现。但是说得容易做得难,天线效率的设计远远难过设定要求。在手机生产史的早期,天线是信号射频系统设计师最后考虑的问题。早期手机体积大,数据率低,加 上全球只有4个频带。这些因素确保早期手机的高信号性能表现不成问题。而快进到 2015年,随着而大屏幕和大电池则成为主流,手机已经演进为精密的智能手 机。原设备制造商逐渐采用多种天线调谐技术以确保LTE在多频带上的信号表现。
LTE射频最关键的是射频前端(RFFE),包括天线及模拟数据处理。RFFE中的功率放大器,滤波器以及电源转化器经设计能够在50欧—天线馈端(天线和RFFE连接处)的目标阻抗—以最高效率运作。天线馈端的天线阻抗取决于天线的类型。而移动设备生产中应用最广泛的是双波段PIFA天线。在谐振频率中,天线的馈电点阻抗为纯电阻(PIFA天线大 约90Ω ,偶极子天线约72Ω ,而单极子天线约36 Ω) 。为了最大限度地提高辐射效率,利用简单的固定匹配电路能将天线的阻抗匹配为50 Ω,借此提高输入天线功率的辐射。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !