SPI接口的实时时钟与微控制器-Interfacing SP

通信设计应用

65人已加入

描述

Abstract: Dallas Semiconductor/Maxim offers a variety of serial real-time clocks (RTCs). Several of these RTCs use the industry-standard Motorola SPI interface to communicate with a microprocessor. This application note helps customers understand the basics of the SPI interface.

Overview

The SPI standard includes four modes, defined by the polarity of SCLK and the phase relationship between data and SCLK. The clock polarity (CPOL) is determined by the idle state of SCLK. If the idle state is low, CPOL is 0. If the idle state is high, CPOL is 1. The clock phase (CPHA) is determined by which edge that data is valid. If the data is valid on the first edge of SCLK, CPHA is 0. If the data is valid on the second edge of SCLK, CPHA is 1.

Industry has two common formats to define the four SPI modes. The first format defines the four possible combinations of phase and polarity as mode 0, mode 1, mode 2, and mode 3. The second format defines the combinations as mode 0,0, mode 0,1, mode 1,0, and mode 1,1. The SPI master must use a mode supported by the slave device to allow proper communications.

Dallas Semiconductor/Maxim's SPI-interface RTCs support both SCLK polarities. The RTC automatically determines the polarity by detecting the idle state of SCLK when CE is asserted. The master must, therefore, place SCLK in the proper idle state before CE is asserted. Only one phase is supported. Since two SCLK polarities are supported, two of the four SPI modes are supported by the RTCs: modes 1 and 3 (mode 0,1 and mode 1,1).

On microcontrollers with built-in SPI interfaces, an SPI control or configuration register will have bits that control the polarity and phase. Because the RTC supports either polarity, the polarity can be set as desired. The phase bit, however, must be set properly, or the RTC will not operate correctly.

Figure 1 shows a typical single-byte read and Figure 2 shows a typical single-byte write. Each time CE is asserted, the first eight SCLK pulses are used to clock in a command byte. The command byte consists of several bits that define a register address, and one bit that defines the data direction: a write if the next eight SCLK pulses will clock data into the part, or a read if data is clocked out of the part. Additional groups of eight SCLK pulses continue to transfer data in the selected direction until CE is deasserted.

微控制器
Note: In burst mode, CE is kept high and additional SCLK cycles are sent until the end of the burst.
Figure 1. Single-byte read.

微控制器
Note: In burst mode, CE is kept high and additional SCLK cycles are sent until the end of the burst.
Figure 2. Single-byte write.

Examples of SPI code are available at: Real-Time Clocks

Summary

The information in this application note will help ensure that SPI communication routines will function correctly.

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分