折射率导引型光子晶体光纤特性及应用

电子说

1.3w人已加入

描述

  1、无截止单模

  第一根实心光子晶体光纤与图1.1非常相似,由一个三角形晶格的空气孔构成,其中空气孔的直径d≈300nm,孔间距=2.3μm。这种光纤在实验中似乎从未显示出多模特性,即使对于短波长也是如此。Ressell已经解释了可以通过将光纤中这些空气孔晶格比作模式滤波器或“筛子”用来理解光子晶体光纤所具有的这种独特的无截止单模特性。对于三角形光子晶体光纤的深入研究表明:当d/Λ《0.4时,三角形光子晶体光纤就成为无截止单模光纤,即光纤对于任意波长均呈现单模特性。在该条件下,纤芯尺寸或空气孔的间距决定了光纤的零色散波长、模场直径(MFD)和数值孔径(NA)。

  2、大模场面积大数值孔径

  大模场面积光纤是解决光纤激光器功率提升面临的非线性效应及光纤损伤的一种最直接有效的途径。然而,为保证输出激光的光束质量,在要求大模场面积(LMA)的同时,必须使光纤能够单模运转。而传统的单模光纤的纤芯直径很小,难以实现大模场面积;增大纤芯直径则不可避免地会造成多横模竞争,影响输出光束质量。光子晶体光纤无截止单模的特性使得光子晶体光纤被制作成大模场光纤成为可能,在保证单模传输的前提下,适当改变纤芯尺寸或空气孔的间距即可得到更大的模场直径(MFD)和数值孔径(NA)。因此,光子晶体光纤可实现单模大模场面积,在保证激光传输质量的同时,显著降低光纤中的激光功率密度,减小光纤中的非线性效应,提高光纤材料的损伤阈值;其次,光子晶体光纤可以实现较大的内包层数值孔径,从而提高抽运光的耦合效率,可采用长度相对较短的光纤实现高功率输出。

  如图1.2所示为空气包层光子晶体光纤,由于光纤中具有较大的硅脊宽度和空气包层,这些特点导致光纤的纤芯和包层之间的折射率差极大地提高,这也就决定了光纤具有很大的数值孔径。

  

  图1.2空气包层光子晶体光纤横截面显微图

  3、色散控制

  在光子晶体光纤中,光纤色散可以被控制和以空前的自由度进行调节。如果不断增大光子晶体光纤的空气孔,其纤芯就会变得越来越孤立,如果将整个光纤的结构做的非常小,其零色散波长就会被转移到可见光波段;相反的,在空气孔较小的光子晶体光纤中,光纤具有较低的空气填充比,此光纤可在一些特定的波长范围内具有非常平坦的光纤色散曲线。

  4、超高非线性特性

  实心光子晶体光纤的重要特点是通过增大光纤的空气孔,或者减小纤芯的尺寸,光纤中可以实现比传统光纤大的多的有效折射率差,此时,光波会被约束在光纤的硅纤芯中,这样可以起到对导波模式很强的限制作用。如此可在光纤的纤芯中聚集很高的光场强,这样就增强了光纤的非线性效应。而且,光子晶体光纤可用来制作具有所需色散特性的非线性光纤器件。目前这是光子晶体光纤最重要的应用领域。

  

  图1.4适用于产生超连续谱的光子晶体光纤横截面显微图

  一个重要的例子是产生超连续谱,即通过高功率的光脉冲在非线性介质中传输来产生宽带超连续谱。超连续谱并非指某种特别的现象,实际上是指各种非线性效应,它们共同导致了非常大的光频谱展宽。超连续谱产生的决定因素是非线性介质的色散,通过适当的色散特性设计能够明显的降低超连续谱的功率要求。

  5、高双折射

  光子晶体光纤与传统的保偏光纤(蝴蝶结形、椭圆形、熊猫形)不同,这些传统保偏光纤中至少使用了两种不同的玻璃材料,而每种材料的热膨胀系数不同,因此存在温度敏感的问题;而光子晶体光纤所能获得的双折射特性对温度极不敏感,这是许多领域都需的一个重要特征。

  

  图1.5保偏光子晶体光纤横截面显微图

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分