人工智能通过使用机器学习带来的利与弊

电子说

1.3w人已加入

描述

当前,AI医疗、智慧家庭、自动驾驶、智能交易等人工智能的发展不断颠覆企业的商业模式,也在改变我们的生活方式。中国科学院院士、上海交通大学副校长毛军发表示,人工智能作为“加速器”已涉及医疗、金融、交通、新闻等各行各业,可以有效解决传统行业面临的问题,发挥大量数据的价值,赋能传统产业发展。

“人工智能发展的本质是通过算法、算力和数据去解决完全信息和结构化环境下的确定性问题。”毛军发认为,随着算法、算力和数据的进一步发展,势必加速万物智能时代到来,为人工智能赋能各种场景打通重要通道,实现万物互联。

但不可否认的是,人工智能在服务和赋能人类生产生活同时,也带来了难以忽视的安全风险。

【人工智能安全问题分类】

一、数据风险

1. “数据投毒”

所谓的“数据投毒”指人工智能训练数据污染导致人工智能决策错误。通过在训练数据里加入伪装数据、恶意样本等,破坏数据的完整性,进而导致训练的算法模型决策出现偏差。

“数据投毒”主要有两种攻击方式:

一种是采用模型偏斜方式,攻击目标是训练数据样本,通过污染训练数据达到改变分类器分类边界的目的;另一种则是采用反馈误导方式,攻击目标是人工智能的学习模型本身,利用模型的用户反馈机制发起攻击,直接向模型“注入”伪装的数据或信息,误导人工智能做出错误判断。

“数据投毒”危害性十分巨大,特别是在自动驾驶领域,可导致车辆违反交通规则甚至造成交通事故。

2. 数据泄露

一方面逆向攻击可导致算法模型内部的数据泄露;

另一方面,人工智能技术可加强数据挖掘分析能力,加大隐私泄露风险。比如各类智能设备(如智能手环、智能音箱)和智能系统(如生物特征识别系统、智能医疗系统),人工智能设备和系统对个人信息采集更加直接与全面。人工智能应用采集的信息包括了人脸、指纹、声纹、虹膜、心跳、基因等,具有很强的个人属性。这些信息具有唯一性和不变性,一旦泄露或者滥用将产生严重后果。

3. 数据异常

运行阶段的数据异常可导致智能系统运行错误,同时模型窃取攻击可对算法模型的数据进行逆向还原。此外,开源学习框架存在安全风险,也可导致人工智能系统数据泄露。

二、算法风险

图像识别、图像欺骗等会导致算法出问题,比如自动驾驶,谷歌也做了一些研究,如果模型文件被黑客控制恶意修改,并且给它学习,会产生完全不一样的结果;算法设计或实施有误可产生与预期不符甚至伤害性结果;算法潜藏偏见和歧视,导致决策结果可能存在不公;算法黑箱导致人工智能决策不可解释,引发监督审查困境;含有噪声或偏差的训练数据可影响算法模型准确性。

三、网络风险

人工智能不可避免的会引入网络连接,网络本身的安全风险也会将AI带入风险的深坑;人工智能技术本身也能够提升网络攻击的智能化水平,进而进行数据智能窃取;人工智能可用来自动锁定目标,进行数据勒索攻击。人工智能技术通过对特征库学习自动查找系统漏洞和识别关键目标,提高攻击效率;人工智能可自动生成大量虚假威胁情报,对分析系统实施攻击。人工智能通过使用机器学习、数据挖掘和自然语言处理等技术处理安全大数据,能自动生产威胁性情报,攻击者也可利用相关技术生成大量错误情报以混淆判断;人工智能可自动识别图像验证码,窃取系统数据。图像验证码是一种防止机器人账户滥用网站或服务的常用验证措施,但人工智能通过学习可以让这一验证措施失效。

四、其他风险

第三方组件问题也会存在问题,包括对文件、网络协议、各种外部输入协议的处理都会出问题。被黑客利用,带来的是灾难性的毁灭。

【通俗来讲就是:再牛逼的安全验证,最终也不过是一串数据!】

我们要清楚的认识到,人工智能的时代数据安全也面临了很多新的挑战。保护数据安全保护算法安全,对于企业来说变为了重中之重。
       责任编辑:pj

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分