鉴幅式伺服系统的工作原理

机械设计

66人已加入

描述

鉴幅式伺服系统的工作原理

图5--25是鉴幅式伺服系统的方框图。该系统由测量元件及信号处理线路、数模转换器、比较器、驱动环节和执行元件五部分组成。它与鉴相式伺服系统的主要区别有两点:一是它的测量元件是以鉴幅式工作状态进行工作的,因此,可用于鉴幅式伺服系统的测量元件有旋转变压器和感应同步器;二是比较器所比较的是数字脉冲量,而与之对应的鉴相式伺服系统的鉴相器所比较的是相位信号,故在鉴幅式伺服系统中,不需要基准信号,两数字脉冲量可直接在比较器中进行脉冲数量的比较。

伺服
图5-25   鉴幅式伺服系统

鉴幅式系统的工作原理如下:

进入比较器的信号有两路:一路来自数控装置插补器或插补软件的进给脉冲,它代表了数控装置要求机床工作台移动的位移;另一路来自测量元件及信号处理线路,也是以数字脉冲形式出现,它代表了工作台实际移动的距离。鉴幅系统工作前,数控装置和测量元件的信号处理线路都没有脉冲输出,比较器的输出为零。这时,执行元件不能带动工作台移动。出现进给脉冲信号之后,比较器的输出不再为零,执行元件开始带动工作台移动,同时,以鉴幅式工作的测量元件又将工作台的位移检测出来,经信号处理线路转换成相应的数字脉冲信号,该数字脉冲信号作为反馈信号进入比较器与进给脉冲进行比较。若两者相等,比较器的输出为零,说明工作台实际移动的距离等于指令信号要求工作台移动的距离,执行元件停止带动工作台移动;若两者不相等,说明工作台实际移动的距离还不等于指令信号要求工作台移动的距离,执行元件继续带动工作台移动,直到比较器输出为零时停止。

在鉴幅式伺服系统中,数模转换电路的作用是将比较器输出的数字量转化为直流电压信号,图5--26测量元件及信号处理线路该信号经驱动线路进行电压和功率放大,驱动执行元件带动工作台移动。测量元件及信号处理线路是将工作台的机械位移检测出来并转换为数字脉冲量。

伺服
图5-26 测量元件及信号处理线路

测量元件及信号处理线路是如何将工作台的机械位移检测出来并转换为数字脉冲的呢?测量元件的工作原理在第四章中已经详细地介绍过,下面重点介绍信号处理线路的工作原理。

图5-26是测量元件及信号处理线路的框图,它主要由测量元件、解调电路、电压频率转换器和sin/cos发生器组成。由测量元件的工作原理可知,当工作台移动时,测量元件根据工作的位移量,即丝杠转角 输出电压信号伺服

A是此时测量元件激磁信号的电气角。 的幅值 代表着工作台的位移。 经滤波、放大、检波、整流以后,变成方向与工作台移动方向相对应,幅值与工作台位移成正比的直流电压信号,这个过程称为解调。解调电路也称鉴幅器。解调后的信号经电压频率转换器变成计数脉冲,脉冲的个数与电压幅值成正比,并用符号触发器表示方向。一方面,该计数脉冲及其符号送到比较器与进给脉冲比较;另一方面,经sin/cos发生器,产生驱动测量元件的两路信号sin和cos,使 角与此相对应发生改变。该驱动信号是方波信号,它的脉宽随计数脉冲的多少而变。根据傅里叶展开式,当该方波信号作用于测量元件时,其基波信号分量为

   伺服                   
角的大小由方波的宽度决定。若测量元件的转子没有新位移,因激磁信号电气角由 变为 ,它所输出的幅值信号也随之变化,而且逐步趋于零。若输出的新的幅值信号

伺服

不为零, 将再一次经电压频率转换器、sin/cos信号发生器,产生下一个激磁信号,该激磁信号将使测量元件的输出进一步接近于零,这个过程的不断重复,直到测量元件的输出为零时止。在这个过程中,电压频率转换器送给比较器的脉冲数量正好等于 角所代表的工作台的位移量。通常,我们总希望测量过渡过程尽可能短,如果这个过程很长,当有连续的进给脉冲时,由于来自测量元件的反馈脉冲不能及时到来,比较器输出的误差信号本身就带有很大的误差,因而必定要造成伺服系统的拖动误差,从而影响加工精度。

还有一点须要说明,测量元件的激磁信号sin/cos是方波信号,傅里叶展开后,可分解为基波信号和无穷个高次谐波信号,因此,测量元件的输出也必然含有这些高次谐波的影响,故在解调线路中,须首先进行滤波,将这些高次谐波的影响排除掉。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分