电子说
据说,4mA 至20mA 电流环路将消失? 但是,这种模拟接口现在仍然是连接电流环路电源与检测电路的最常见方法。 这种接口需要将电压信号(典型值为 1V 至5V)转换为 4mA 至 20mA 的输出。严格的准确度要求决定,必须使用昂贵的精密电阻器或微调电位器,来校准较不精密器件的初始误差,满足设计目标要求。
在今天以自动测试设备为主导和表面贴装型生产环境中,这两种技术都不是最佳方法。获得采用表面贴装封装的精密电阻器很难,微调电位器又需要人工干预,而这种要求与生产环境是不相容的。 ADI LT5400 四匹配电阻器网络帮助解决了上述问题,该产品采用一种简便的电路,不需要微调,但实现了小于 0.2% 的整体误差(如下图)。
精确匹配的电阻器提供准确的电压至电流转换
该电路采用两级放大器,利用了 LT5400 独特的匹配特性。 接下来我们具体分析这两级放大器。
01第一级
将典型值为 1V 至 5V 的输出(通常来自DAC)加到运算放大器 IC1 A的非反相输入。这个电压通过 FET Q2将通过 R1 的电流准确地设定为VIN/R1。相同的电流通过 R2 拉低,因此 R2 底端的电压为 24 V 环路电源电压减去输入电压。这部分电路有3个主要误差源:R1 和 R2 的匹配,IC1A的失调电压,以及 Q2 的泄漏电流。
R1 和 R2 的准确值并不重要,但是它们必须相互准确匹配。LT5400A 级版本以 ±0.01% 的误差实现了这一目标;LT1490A 在 0°C至 70°C之间的失调电压不到700V。
这个电压在输入电压为 1V 时产生的误差为0.07%。NDS7002A 的泄漏电流为10nA,尽管其数值通常小得多。这个泄漏电流代表0.001%的误差。
02第二级
靠拉动通过 Q1 的电流,保持 R3 上的电压等于 R2 上的电压。因为 R2 上的电压等于输入电压,所以通过Q1 的电流准确地等于输人电压除以 R3 。通过给R3并联一个精确的 250Ω 分流电阻,该电流将准确跟踪输入电压。这一级的误差源是:R3 的值、IC1 R 的失调电压和 Q1 的泄漏电流。
电阻器 R3 直接设定输出电流,因此其值对于该电路的精确度至关重要。这个电路利用常用的 250Ω并 联电阻完成电流环路。图中的 Riedon SF-2 器件的初始准确度为 0.1%,温度漂移很低,与第一级的情形类似,失调电压产生不超过 0.07% 的误差。Q1 的泄漏电流低于 100nA,所产生的最大误差为 0.0025 %。
没有任何微调时,总输出误差好于0.2%。电流检测电阻器R3是主要的误差源。如果使用一个更高质量的器件(例如 Vishay PLT系列器件),那么可以实现 0.1% 的准确度。电流环路输出在使用中受到相当大的应力。从输出到 24V 环路电源和地之间的二极管 D1 和 D2 帮助保护Q1;R6 提供一定的隔离。通过提高 R6 的值,并在输出端以牺牲一些符合条件的电压作为代价,可以实现更高的隔离度。如果最高输出电压要求低于 10V,那么可以将 R6 的值提高到 100Ω,针对输出应力提供更高的隔离度。如果设计方案需要增强保护,那么可以给输出加上一个瞬态电压抑制器,当然这么做会由于泄漏电流而导致输出准确度有一定的损失。
这一设计方案仅使用了 LT5400 封装中 4 个匹配电阻器中的两个。还可以将另外两个电阻器用于其他电路功能(例如精确的反相器),或者另一个 4mA 至 20mA 转换器。另外,还可以引入其他电阻器与 R1 和 R2 并联。这种方法可降低电阻器产生的统计误差,降幅为 2 的平方根。
LT5400
A 级:0.01% 匹配准确度
B 级:0.025% 匹配准确度
卓越的匹配性能
0.2ppm/ºC 匹配温度漂移
±75V 工作电压 (±80V 绝对最大值)
8ppm/ºC 绝对电阻值温度漂移
长期稳定性:< 2ppm (在 2000 小时)
–55ºC 至 150ºC 工作温度范围
8 引脚 MSOP 封装
全部0条评论
快来发表一下你的评论吧 !