一文详解电机S曲线加减速控制

电子说

1.2w人已加入

描述

1、 S型曲线

1.1 简介

Sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。Sigmoid函数也叫Logistic函数,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。该S型函数有以下优缺点:优点是平滑,而缺点则是计算量大

Sigmoid函数由下列公式定义:

加减速控制

Sigmoid函数在[-8,8]的计算数值以及图形如下:

加减速控制

加减速控制

由以上数据与图形可见,S型曲线就是指图形中变化阶段的曲线呈现一个英文字母'S'型,该曲线无限趋向于0和1,即取值范围为(0,1)

1.2 曲线延伸

加减速控制


为了更直观地观察A、B、a、b分量对函数的影响,我整理 了一下对应的曲线图,如下所示:






 

加减速控制

加减速控制

由图可见,A、B分量影响的是曲线的取值范围,而a、b分量影响的则是曲线的平滑程度。

2、应用场景 – 电机加减速控制

2.1 简介

电机加减速,顾名思义,即电机以加速方式启动,速度达到预设目标速度后保持一段时间匀速转动,随后又开始以减速方式转动直至电机以一个较低的速度停止转动。

一方面,电机加减速可以避免电机急开急停,进而可能对电机造成一定损坏;另一方面,也可以防止电机在高驱动速度不能起步的情况,即高驱动速度会出现空转、丢步现象。因而,在电机需要达到一个较高的速度时,通常需要采用慢速加速驱动的方法,简而言之,就是需要有一个加速过程。

例如:步进电机驱动负载可以按目标速度起动,若目标速度超过自身起动脉冲频率时,则该情况下不能起动。因而,只有当起动频率比电机起动脉冲频率低时才能正常起动,采取加速的方式使速度线性地增加到目标速度,这种方法则称为慢速加速驱动

2.2 T型与S型

目前,在电机加减速控制上,普遍的加减速方法主要有T型加减速S型加减速,实现方法则有公式法查表法

S型加减速相对于T型加减速更加平稳,对电机和传动系统的冲击更小,即S型加减速的优点是启动和停止都很平滑,不会有很大的冲击,但是也并非不存在缺点,缺点就是启动和停止的时间比较长

加减速控制

2.3 电机加减速控制

如要将S型曲线应用到电机的加减速控制上,需要将方程在X、Y坐标系进行平移,同时对曲线进行拉升变化:即 Y = A + B / ( 1 + exp( -ax + b ) ) ,则根据该曲线方程的相关特征可知,A、B分量可用于控制电机速度(频率)的取值范围,而a、b分量可用于控制速度(频率)变化率。最终根据实际的需要,在加减速过程中采用以下的曲线方程为:

Fcurrent = Fstart + (Fend-Fstart)/(1+exp( -Flexible(i - Num )/ Num) )

     = Fstart + (Fend-Fstart)/(1+exp( -(Flexible/Num)*i + Flexible) )

即此处相当于 A = FstartB = Fend-Fstarta = Flexible/Numb = Flexible ,取值范围为(Fstart,Fend),即加减速的起始速度(频率)以及目标速度(频率)。上述公式各变量说明如下:

加减速控制

以上公式既可当作加速曲线,也可当作减速曲线。因此,一般情况下,我们只需要计算加速曲线,在减速时作反向操作即可。电机从10kHz加速到100kHz的加速曲线以及从100kHz减速到10kHz的减速曲线示例如下所示:

加减速控制

2.4 示例代码

在电机加减速控制上,电机频率越大,电机速度越快。因而,可以通过公式法求出每个加减速点的频率值,进而通过电机频率求出具体的脉冲周期,最后在间隔相同的时间内改变脉冲相关参数(分频、周期、占空比)即可达到加减速的效果。一般情况下,如步进电机、伺服电机等,分频与占空比通常固定数值即可,这样在加减速过程仅需改变输出周期值即可。同时,不同频率脉冲输出时也需要注意脉冲的连续性(即我们需要在当前脉冲完全输出之后才能改变电机频率),否则电机加减速过程就会出现丢步现象,在脉冲数严格要求的情况下造成累积误差。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分