一篇文章秒杀三道区间相关的问题

描述

经常有读者问区间相关的问题,今天写一篇文章,秒杀三道区间相关的问题。

所谓区间问题,就是线段问题,让你合并所有线段、找出线段的交集等等。主要有两个技巧:

1、排序。常见的排序方法就是按照区间起点排序,或者先按照起点升序排序,若起点相同,则按照终点降序排序。当然,如果你非要按照终点排序,无非对称操作,本质都是一样的。

2、画图。就是说不要偷懒,勤动手,两个区间的相对位置到底有几种可能,不同的相对位置我们的代码应该怎么去处理。

废话不多说,下面我们来做题。

区间覆盖问题

这是力扣第 1288 题,看下题目:

区间

题目问我们,去除被覆盖区间之后,还剩下多少区间,那么我们可以先算一算,被覆盖区间有多少个,然后和总数相减就是剩余区间数。

对于这种区间问题,如果没啥头绪,首先排个序看看,比如我们按照区间的起点进行升序排序:

区间

排序之后,两个相邻区间可能有如下三种相对位置:

区间

对于这三种情况,我们应该这样处理:

对于情况一,找到了覆盖区间。

对于情况二,两个区间可以合并,成一个大区间。

对于情况三,两个区间完全不相交。

依据几种情况,我们可以写出如下代码:

int removeCoveredIntervals(int[][] intvs) {     // 按照起点升序排列,起点相同时降序排列     Arrays.sort(intvs, (a, b) -> {         if (a[0] == b[0]) {             return b[1] - a[1];         }         return a[0] - b[0];      });     // 记录合并区间的起点和终点     int left = intvs[0][0];     int right = intvs[0][1];     int res = 0;     for (int i = 1; i < intvs.length; i++) {         int[] intv = intvs[i];         // 情况一,找到覆盖区间         if (left <= intv[0] && right >= intv[1]) {             res++;         }         // 情况二,找到相交区间,合并         if (right >= intv[0] && right <= intv[1]) {             right = intv[1];         }         // 情况三,完全不相交,更新起点和终点         if (right < intv[0]) {             left = intv[0];             right = intv[1];         }     }     return intvs.length - res; }

以上就是本题的解法代码,起点升序排列,终点降序排列的目的是防止如下情况:

区间

对于这两个起点相同的区间,我们需要保证长的那个区间在上面(按照终点降序),这样才会被判定为覆盖,否则会被错误地判定为相交,少算一个覆盖区间。

区间合并问题

力扣第 56 题就是一道相关问题,题目很好理解:

区间

title

我们解决区间问题的一般思路是先排序,然后观察规律。

一个区间可以表示为[start, end],前文聊的区间调度问题,需要按end排序,以便满足贪心选择性质。而对于区间合并问题,其实按end和start排序都可以,不过为了清晰起见,我们选择按start排序。

区间

显然,对于几个相交区间合并后的结果区间x,x.start一定是这些相交区间中start最小的,x.end一定是这些相交区间中end最大的。

区间

由于已经排了序,x.start很好确定,求x.end也很容易,可以类比在数组中找最大值的过程:

int max_ele = arr[0]; for (int i = 1; i < arr.length; i++)      max_ele = max(max_ele, arr[i]); return max_ele;

然后就可以写出完整代码

# intervals 形如 [[1,3],[2,6]...] def merge(intervals):     if not intervals: return []     # 按区间的 start 升序排列     intervals.sort(key=lambda intv: intv[0])     res = []     res.append(intervals[0])     for i in range(1, len(intervals)):         curr = intervals[i]         # res 中最后一个元素的引用         last = res[-1]         if curr[0] <= last[1]:             # 找到最大的 end             last[1] = max(last[1], curr[1])         else:             # 处理下一个待合并区间             res.append(curr)     return res

区间

区间交集问题

先看下题目,力扣第 986 题就是这个问题:

区间

title

题目很好理解,就是让你找交集,注意区间都是闭区间。

解决区间问题的思路一般是先排序,以便操作,不过题目说已经排好序了,那么可以用两个索引指针在A和B中游走,把交集找出来,代码大概是这样的:

# A, B 形如 [[0,2],[5,10]...] def intervalIntersection(A, B):     i, j = 0, 0     res = []     while i < len(A) and j < len(B):         # ...         j += 1         i += 1     return res

不难,我们先老老实实分析一下各种情况。

首先,对于两个区间,我们用[a1,a2]和[b1,b2]表示在A和B中的两个区间,那么什么情况下这两个区间没有交集呢:

区间

只有这两种情况,写成代码的条件判断就是这样:

if b2 < a1 or a2 < b1:     [a1,a2] 和 [b1,b2] 无交集

那么,什么情况下,两个区间存在交集呢?根据命题的否定,上面逻辑的否命题就是存在交集的条件:

# 不等号取反,or 也要变成 and if b2 >= a1 and a2 >= b1:     [a1,a2] 和 [b1,b2] 存在交集

接下来,两个区间存在交集的情况有哪些呢?穷举出来:

区间

这很简单吧,就这四种情况而已。那么接下来思考,这几种情况下,交集是否有什么共同点呢?

区间

我们惊奇地发现,交集区间是有规律的!如果交集区间是[c1,c2],那么c1=max(a1,b1),c2=min(a2,b2)!这一点就是寻找交集的核心,我们把代码更进一步:

while i < len(A) and j < len(B):     a1, a2 = A[i][0], A[i][1]     b1, b2 = B[j][0], B[j][1]     if b2 >= a1 and a2 >= b1:         res.append([max(a1, b1), min(a2, b2)])     # ...

最后一步,我们的指针i和j肯定要前进(递增)的,什么时候应该前进呢?

区间

结合动画示例就很好理解了,是否前进,只取决于a2和b2的大小关系:

while i < len(A) and j < len(B):     # ...     if b2 < a2:         j += 1     else:         i += 1

以此思路写出代码:

# A, B 形如 [[0,2],[5,10]...] def intervalIntersection(A, B):     i, j = 0, 0 # 双指针     res = []     while i < len(A) and j < len(B):         a1, a2 = A[i][0], A[i][1]         b1, b2 = B[j][0], B[j][1]         # 两个区间存在交集         if b2 >= a1 and a2 >= b1:             # 计算出交集,加入 res             res.append([max(a1, b1), min(a2, b2)])         # 指针前进         if b2 < a2: j += 1         else:       i += 1     return res

总结一下,区间类问题看起来都比较复杂,情况很多难以处理,但实际上通过观察各种不同情况之间的共性可以发现规律,用简洁的代码就能处理。

责任编辑:xj

原文标题:一文秒杀所有区间相关问题

文章出处:【微信公众号:算法与数据结构】欢迎添加关注!文章转载请注明出处。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分