基于SMIC 0.25μm标准数字CMOS工艺设计12位25MS/s低功耗采样保持电路

模拟技术

2432人已加入

描述

1、引言

随着数字技术的不断突飞猛进,越来越多的电路系统将A/D转换器作为一个子模块集成到系统内部。例如在便携式数据传输、数字视频和图像处理等应用系统中,8~12位分辨率的嵌入式A/D转换器就是这些系统的一个非常重要的组成部分。在这些应用中,如何在保持高采样频率下降低功耗是一个很重要的设计要点。整体而言,流水线型结构A/D转换器是同时实现低功耗、高采样率和高分辨率的合理选择。

在流水线结构的A/D转换电路中,采样保持电路是整个电路的核心模块。同时采样保持电路通常是整个电路中功耗最大的模块,其性能直接决定了整个A/D转换器的性能。本文介绍了运用于视频处理系统的一种12位25MS/s低功耗采样保持电路。

2、 电路结构分析

本文所采用的采样保持电路结构如图1所示。电路使用全差分结构,可以很好地消除直流偏置和偶次谐波失真,抑制来自衬底的共模噪声;采用底板采样技术,可以完全抑制采样时刻由开关的电荷注入和时钟馈通引入的非线性误差;使用栅压自举开关,使采样开关栅压随输入信号变化而等量变化,增加开关的线性度,减小谐波失真。电路功能的实现基于一个受两相不交叠时钟控制的单位增益开关电容电路。

运算放大器

根据时钟可以将该电路工作分为采样和保持两个阶段。在采样阶段,时钟Ck1为高电平有效,运放的两个输入端被短接到Vcm,采样得到的电压以电荷的形式存储在采样Cs上,由于在采样的时候处于开环状态,所以运放的两个输出端也被直接短路,在采样阶段即将结束的时候,时钟Ck1p和Ck1控制的开关依次断开,运放的正负两个输入端的结点完全处于开路的状态,所以这两个结点上存储的电荷差值就不会再改变了;在保持阶段,Ck2为高电平有效,通过电荷的重新分配,输入采样信号通过保持电容Cr转移到输出端,在差分电压输出达到稳定值以后,保持过程结束。选择Cs=Cr,采样保持电路的增益为1。

3 、电路实现

3.1 栅压自举开关设计

在A/D转换器的设计和应用中,谐波失真是极为关键的,它主要来自于开关的导通电阻、电荷注入和寄生电容随源漏电压的变化。为了保证电路的精度和输入信号的带宽,本文中采样开关(BSW)采用栅压自举开关。如图2所示,采样开关M11在单个时钟Ck的控制下实现开关的功能。

3.2运算放大器设计

为了达到12位以上的线性度,运算放大器的开环放大倍数至少大于8 000,因而选择运算放大器的开环增益为80dB;为了满足25 MHz的采样频率,运算放大器的建立时间需小于20ns,对应单位增益带宽应大于125MHz。基于上述要求,同时为了达到最大的输出摆幅和最小的静态功耗,本文采用全差分套筒式共源共栅两级结构,如图3所示。虽然与增益自举结构相比,两级结构速度不占优势,但是两级结构具有大得多的输出电压摆幅,更大的电压摆幅意味着可以使用较小的采样电容,而整个电路的功耗和面积与采样电容成正比,使用较小的电容使得整个电路的功耗和面积大为缩小。

运算放大器

运放的第一级为“套筒式”共源共栅结构,使用NMOS管作为输入管,可以使运放的速度达到最大,因为NMOS管比PMOS管有更高的迁移率和截止频率;第二级采用共源级输出,以提供最大的摆幅和驱动能力。两级中的补偿采用米勒补偿,与一般的米勒补偿相比,采用共源共栅结构的米勒补偿更能提高单位增益带宽。

运算放大器

由于所选用的运算放大器电路为全差分结构,在全差分的跨导运算放大器中,为了稳定直流共模输出电压,通常采用共模反馈电路(CMFB),运放共模反馈电路结构如图4所示,电路采用开关电容结构。由于反馈电路采用无源元件(电容)和开关组成,运算放大器的输出电压不受共模检测电路的限制,并且反馈电路不消耗静态直流功耗。其中Vcm和Vbn为偏置电压,当时钟为Ck1有效时,左边两个电容组成的左半支路的电容两端分别接Vcm和Vbn复位,右半支路的两个电容工作产生共模反馈电平CMFB。当时钟为Ck2有效时相反,左半支路工作产生共模反馈电平CMFB,右半支路复位。其中4个电容取值均为0.2pF,所有开关实现均为CMOS开关。

运算放大器

3.3 采样电容的确定

对于12位精度的A/D转换器来说,其信噪比(SNR)应大于76dB。SNR取决于信号摆幅均方值于等效输入噪声均方值之比。本文设计采用SMIC 0.25μm标准数字CMOS工艺进行设计,电源电压为2.5V单电源,所选取的直流共模偏置为1.2V,信号摆幅为±1.5V。为达到76dB的SNR,采样电容值应大于0.5pF。为留有足够的余量,选取采样电容C5=Cf=1.5pF。

4、 电路仿真及分析

采用Hspice基于SMIC 0.25μm标准数字CMOS工艺模型对整个电路进行了仿真。首先对所设计的栅压自举开关进行仿真,在25MHz时钟条件下的瞬时波形如图5所示。输入信号为1V正弦信号,从图中可以看出开关栅压信号很好地跟随了输入信号。

同时对所设计的运放在1.5pF电容负载和2.5V单电源下,偏置电压Vcm=1.2V、Vbn=0.645V、Vbnc=1.0V、Vbpc=1.145V时,开环电压增益、相位裕度、单位增益带宽、功耗、转换速率等主要电路参数进行了模拟。图6为运放的频率响应曲线,从中可以看出运放开环增益为86dB,相位裕度为76.1°,单位增益带宽为140MHz。

输入幅度为1V、频率为2.563 476MHz的正弦波信号时,整个采样保持电路工作在25MS/s条件的瞬时仿真波形如图7所示。此时,整个电路的功耗为10.41mW。

运算放大器

另外,输入信号分别为2.563 476MHz幅值为1V正弦波信号时,对采样保持电路的输出波形信号进行了FFT分析,对应2048点FFT频谱图如图8所示。从频谱图中可以看出由于采用全差分结构,信号的偶次谐波失真得到了很好的抑制。对应输出信号的SFDR为75.6dB。

运算放大器

5 、结论

本文给出了一种可以进行双采样的12位25MS/s采样保持电路,电路采用SMIC 0.25 μm标准数字CMOS工艺进行设计。仿真的结果表明,所设计的采样保持电路完全符合12位25 MS/s A/D转换器的性能要求。

责任编辑:gt

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分