基于SoPC的汽车安全监控系统设计

FPGA/ASIC技术

206人已加入

描述

摘要: 介绍基于Altera公司SoPC的汽车安全监控系统,利用嵌入在FPGA中的Nios处理器软核CPU,配合GPS和GSM系统,对汽车的停放和运行状态进行监测和控制。文中详细介绍系统的硬件组成,并给出对GPS和GSM的C语言管理程序。

关键词: SoPC Nios GPS GSM


引 言

   基于SoPC的汽车安全监控系统采用Altera公司最新的SoPC(可编程片上系统)解决方案——Nios处理器软核为核心,配合GPS和GSM系统,对汽车的停放和运行状态进行监控。系统监测、记录和储存汽车在行驶过程中的各种数据,一旦出现安全问题,立即采用GSM无线通信方式通知相关人员和单位,并随时发送通过GPS获得的汽车位置等数据,为问题的解决提供及时、准确和可靠的信息,必要时通过GSM对汽车进行远程控制。

   基于SoPC的汽车安全监控系统可广泛应用于汽车的防盗、日常维护和交通事故的处理,为车辆故障提供有效的测试手段。

1 系统硬件组成

   设计采用Altera公司的SoPC开发工具。系统的开发包括硬件和软件两大部分。使用SoPC Builder生成Nios嵌入式处理器,Nios嵌入式处理器开发工具允许用户配置一个或多个Nios CPU,从标准库中添加外围设备,综合处理自定义系统,与Quartus II设计软件一起编译系统。软件开发的步骤是:利用SoPC Builder生成的软件文件,用文本编辑器编写汇编语言或C/C++源程序,用GNUPro软件开发工具进行程序设计、连编和调试。GNUPro将源程序连编(包括汇编/编译和连接)成可执行程序,通过下载电缆对可执行程序进行调试和运行。Quartus II设计软件提供全面有效的设计环境,将设计、综合、布局和验证以及第三方EDA工具接口集成在一个无缝的环境中。利用集成在Quartus II 3.0中的SoPCbuilder可以创建自己的Nios CPU系统。Nios是Altera公司开发的16/32位嵌入式处理器软核。
* 校科研基金项目“基于SOPC的汽车安全监控系统”资助。

   Altera公司推出了新一代多种系列FPGA,本设计选用低成本的Cyclone系列器件EP1C12,其具有12 060个逻辑单元,52个M4K RAM块,239 616个RAM位和2个锁相环,最大用户I/O引脚249。

   系统硬件组成框图由Nios系统和外部设备两部分组成,如图1所示。

   Nios系统包括CPU(Nios)、存储器(memory)、定时器(timer)、总线和并/串行接口(key_pio、led_pio、lcd_pio、ccs_pio、uart_0和uart_1)等,并/串行接口分别实现与键盘、LED和LCD显示器、汽车中控系统以及GPS和GSM系统等外部设备的连接。Nios系统设计和设计结果分别如图2和图3所示。


sopc
                 图1系统硬件组成框图


sopc
                    图2Nios系统设计


sopc
                   图3Nios系统设计结果

   Nios系统同键盘、LED和LCD显示器、汽车中控系统以及GPS系统等外部设备的连接比较简单,GSM系统的连接较为复杂,如图4所示。

   整个系统的工作过程是:来自汽车中控系统和GPS系统的信息可以显示在LED和LCD显示器上,也可以通过GSM系统进行无线发送。用户可以通过键盘对系统进行控制,也可以通过GSM系统对汽车中控系统进行远程无线控制。

2 系统软件组成

   系统软件主要由主程序、GPS管理子程序和GSM管理子程序等部分组成。

   主程序完成系统的初始化,以及键盘、LED、LCD显示器和汽车中控系统的操作管理等。

   GPS管理子程序主要负责从GPS系统接收时间和位置信息。

   请求GPS系统返回ASCII时间位置信息的二进制命令为:


@@EqmC
其中,m为0时,输出一次响应信息(查询),m为1~255时,每1~255 s输出一次响应信息(连续);
C为校验和(Eqm按字节“异或”);
为回车(十六进制0d);
为换行(十六进制0a);
命令长度为8字节。
命令的响应信息为:
@@Eq,mm,dd,yy,hh,mm,ss,dd,mm.mmmm,n,ddd,mm.mmmm,w, shhhhh.h,sss.s,hhh.h,m,t,dd.d,nn,rrrr,aa,CCC
日期:mm是月(01~12),dd是日(01~31),yy是年(99~19)。
世界时间(UTC):hh是时(00~23),mm是分(00~59),ss是秒(00~59)。
纬度:dd是度(00~90),mm.mmmm是分(00~59.9999),n是方向(N是北,S是南)。
经度:ddd是度(000~180),mm.mmmm是分(00~59.9999),w是方向(W是西,E是东)。
信息长度是96字节。

对应的管理子程序为:

int eq[8]={'@','@','E','q',1,'C',0x0d,0x0a};
void gps_txd(int data[], int n) {
volatile int m,sum=0;
for(m=0;mwhile(~na_uart_0->np_uartstatus & 0x40);
//等待发送准备好
if(m!=n-3) {
sum^=data[m];//计算校验和
na_uart_0->np_uarttxdata=data[m];//发送数据
}else
na_uart_0->np_uarttxdata=sum; //发送校验和
}
}
int gps,gps_buf[46];//定义全局变量
void gps_rxd(int context) {//接收中断服务程序
gps_buf[gps]=na_uart_0->np_uartrxdata; //接收数据
if(gps_buf[gps++]=='q') gps=0; //数据定位
if(gps>46) gps=46;//忽略无用数据
}
GSM管理子程序主要负责GSM系统的数据收发管理。
GSM系统的数据收发以短信形式进行,选择短信格式的AT命令为AT+CMGF,收发短信的AT命令分别为AT+CMGR和AT+CMGS,对应的管理子程序为:
cmgf[20]={'A','T','+','C','M','G','F','=','1',0x0d};//短信格式void gsm_txd(int data[], int n) {
volatile int m;
for(m=0;mwhile(~na_uart_1->np_uartstatus & 0x40);
//等待发送准备好na_uart_1->np_uarttxdata=data[m]; //发送数据
}
}
int gsm=2,gsm_buf[18]={'A','T'};
void gsm_rxd(int context) {
//接收中断服务程序
gsm_buf[gsm]=na_uart_1->np_uartrxdata; //接收数据
if(gsm_buf[gsm]=='T') gsm=1;
//数据定位
if(++gsm==18) gsm=2;
}

 


sopc
                 图4TC35i GSM系统连接图


3 设计调试方法和设计结果

   在Quartus II中使用SignalTapII嵌入式逻辑分析仪可以实时观测系统中节点的信号数据。被观察的信号可以多进制数值显示也可以用波形显示,但它需要占用芯片更多的资源,因此在对某个模块的测试结束后,可以在设置中把SignalTapII嵌入式逻辑分析仪取消,并重新编译生成以减少LE资源占用量。

   实际试用结果表明:基于SoPC的汽车安全监控系统运行正常,定位准确,数据传输可靠,操作管理方便。如果再配备上GIS(地理信息系统),整个系统将如虎添翼。


参考文献


1 郭书军,王玉花,葛纫秋.嵌入式处理器原理及应用.北京:清华大学出版社,2004
2 Motorola. M12 Oncore Users Guide Supplement, 2000
3 Siemens. TC35 Siemens Cellular Engines Hardware Interface Description, 2001
4 Siemens. TC35 Siemens Cellular Engines AT Command Set, 2002
郭书军:副教授,主要研究方向为数据通信及其信号处理和嵌入式系统。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分