为什么电感串联会增大总电感量,而电感并联会减小总电感量,下面我们先看一下简单的情况,即电感之间没有耦合发生(实际使用中,很多情况也是没有耦合发生)。
1、两个没有耦合关系的电感串联
两个电感没有耦合,则两个电感之间的磁场只是没有相互作用而已,各自独立,各自在自己的磁路中循环;再者,没有耦合关系的电感我们也不谈同名端和异名端的问题,因为同名端和异名端是对于两个及以上的具有耦合关系的电感来说的。
假设一电流i从电感一端流入,当两个电感串联时,两个电感分别产生感应电动势u1和u2,则两个电感的感应电动势之和为u1+u2。
L1的感应电动势u1:
L2的感应电动势u2:
那么,我么把电感看做一个整体,两端电压为u=u1+u2
所以,两个没有耦合关系的电感串联,总电量L是二者之和L=L1+L2。这是由基础的基尔霍夫电压定理“KVL”决定的。
2、两个没有耦合关系的电感并联
如下如图,我们依旧认为两个电感之间没有耦合关系,那么根据并联关系,总电流分支电流i1和i2会分别流过电感L1和L2,并联情况下u=u1=u2。
电感L1的感应电动势u及电流变量di1
电感L2的感应电动势u及电流变量di2
总电流是i=i1+i2 可知di=di1+di2
根据总电流关系推导出并联的总电感L
那么根据节点电流关系
所以两个电感并联后,就如同两个电阻并联,这是由基础的基尔霍夫电流节点定理“KCL”决定的
所以两个电感的总电感L最终表达式如下:
当L1=L2时,总电感量是各自电感量的一半,和两个电阻并联的关系形同
对于,两个及以上电感,并联关系依旧是按照上面推导保持电阻式的并联关系。
综上,两个没有耦合的电感在串联和并联情况下,总电量表达式总结如下,当然如果电感存在耦合关系那么也就是我们所说的全电感量,这个就是表达式中会存在一个耦合系数的表达式,大家先掌握我们最简单,即不存在耦合的情况。
编辑:hfy
全部0条评论
快来发表一下你的评论吧 !