一个STM32串口DMA发送 接收(1.5Mbps波特率)机制

描述

偶然看到一篇很干文章,整理分享给大家:

1 前言

直接存储器访问(Direct Memory Access),简称DMA。DMA是CPU一个用于数据从一个地址空间到另一地址空间“搬运”(拷贝)的组件,数据拷贝过程不需CPU干预,数据拷贝结束则通知CPU处理。

因此,大量数据拷贝时,使用DMA可以释放CPU资源。DMA数据拷贝过程,典型的有:

内存—>内存,内存间拷贝

外设—>内存,如uart、spi、i2c等总线接收数据过程

内存—>外设,如uart、spi、i2c等总线发送数据过程

2 串口有必要使用DMA吗

串口(uart)是一种低速的串行异步通信,适用于低速通信场景,通常使用的波特率小于或等于115200bps。

对于小于或者等于115200bps波特率的,而且数据量不大的通信场景,一般没必要使用DMA,或者说使用DMA并未能充分发挥出DMA的作用。

对于数量大,或者波特率提高时,必须使用DMA以释放CPU资源,因为高波特率可能带来这样的问题:

对于发送,使用循环发送,可能阻塞线程,需要消耗大量CPU资源“搬运”数据,浪费CPU

对于发送,使用中断发送,不会阻塞线程,但需浪费大量中断资源,CPU频繁响应中断;以115200bps波特率,1s传输11520字节,大约69us需响应一次中断,如波特率再提高,将消耗更多CPU资源

对于接收,如仍采用传统的中断模式接收,同样会因为频繁中断导致消耗大量CPU资源

因此,高波特率场景下,串口非常有必要使用DMA。

3 实现方式

STM32

整体设计图

4 STM32串口使用DMA

关于STM32串口使用DMA,不乏一些开发板例程及网络上一些博主的使用教程。使用步骤、流程、配置基本大同小异,正确性也没什么毛病,但都是一些基本的Demo例子,作为学习过程没问题;实际项目使用缺乏严谨性,数据量大时可能导致数据异常。

测试平台:

STM32F030C8T6

UART1/UART2

DMA1 Channel2—Channel5

ST标准库

主频48MHz(外部12MHz晶振)

STM32

在这里插入图片描述

5 串口DMA接收

5.1 基本流程

STM32

串口接收流程图

5.2 相关配置

关键步骤

【1】初始化串口

【2】使能串口DMA接收模式,使能串口空闲中断

【3】配置DMA参数,使能DMA通道buf半满(传输一半数据)中断、buf溢满(传输数据完成)中断

为什么需要使用DMA 通道buf半满中断?

很多串口DMA模式接收的教程、例子,基本是使用了“空间中断”+“DMA传输完成中断”来接收数据。

实质上这是存在风险的,当DMA传输数据完成,CPU介入开始拷贝DMA通道buf数据,如果此时串口继续有数据进来,DMA继续搬运数据到buf,就有可能将数据覆盖,因为DMA数据搬运是不受CPU控制的,即使你关闭了CPU中断。

严谨的做法需要做双buf,CPU和DMA各自一块内存交替访问,即是"乒乓缓存” ,处理流程步骤应该是这样:

【1】第一步,DMA先将数据搬运到buf1,搬运完成通知CPU来拷贝buf1数据

【2】第二步,DMA将数据搬运到buf2,与CPU拷贝buf1数据不会冲突

【3】第三步,buf2数据搬运完成,通知CPU来拷贝buf2数据

【4】执行完第三步,DMA返回执行第一步,一直循环

STM32

双缓存DMA数据搬运过程

STM32F0系列DMA不支持双缓存(以具体型号为准)机制,但提供了一个buf"半满中断"。

即是数据搬运到buf大小的一半时,可以产生一个中断信号。基于这个机制,我们可以实现双缓存功能,只需将buf空间开辟大一点即可。

【1】第一步,DMA将数据搬运完成buf的前一半时,产生“半满中断”,CPU来拷贝buf前半部分数据

【2】第二步,DMA继续将数据搬运到buf的后半部分,与CPU拷贝buf前半部数据不会冲突

【3】第三步,buf后半部分数据搬运完成,触发“溢满中断”,CPU来拷贝buf后半部分数据

【4】执行完第三步,DMA返回执行第一步,一直循环

STM32

使用半满中断DMA数据搬运过程

UART2 DMA模式接收配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:

串口接收,DMA通道工作模式设为连续模式

使能DMA通道接收buf半满中断、溢满(传输完成)中断

启动DMA通道前清空相关状态标识,防止首次传输错乱数据

左右滑动查看全部代码>>>

void bsp_uart2_dmarx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel5);   DMA_Cmd(DMA1_Channel5, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->RDR);/* UART2接收数据地址 */  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; /* 接收buf */  DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */  DMA_InitStructure.DMA_BufferSize    = mem_size; /* 接收buf大小 */  DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular; /* 连续模式 */  DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh;   DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel5, &DMA_InitStructure);   DMA_ITConfig(DMA1_Channel5, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、溢满、错误中断 */  DMA_ClearFlag(DMA1_IT_TC5); /* 清除相关状态标识 */  DMA_ClearFlag(DMA1_IT_HT5);  DMA_Cmd(DMA1_Channel5, ENABLE);  }

DMA 错误中断“DMA_IT_TE”,一般用于前期调试使用,用于检查DMA出现错误的次数,发布软件可以不使能该中断。

5.3 接收处理

基于上述描述机制,DMA方式接收串口数据,有三种中断场景需要CPU去将buf数据拷贝到fifo中,分别是:

DMA通道buf溢满(传输完成)场景

DMA通道buf半满场景

串口空闲中断场景

前两者场景,前面文章已经描述。串口空闲中断指的是,数据传输完成后,串口监测到一段时间内没有数据进来,则触发产生的中断信号。

5.3 .1 接收数据大小

数据传输过程是随机的,数据大小也是不定的,存在几类情况:

数据刚好是DMA接收buf的整数倍,这是理想的状态

数据量小于DMA接收buf或者小于接收buf的一半,此时会触发串口空闲中断

因此,我们需根据“DMA通道buf大小”、“DMA通道buf剩余空间大小”、“上一次接收的总数据大小”来计算当前接收的数据大小。

/* 获取DMA通道接收buf剩余空间大小 */ uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);

DMA通道buf溢满场景计算

接收数据大小 = DMA通道buf大小 - 上一次接收的总数据大小

DMA通道buf溢满中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_done_isr(uint8_t uart_id) {    uint16_t recv_size;    recv_size = s_uart_dev[uart_id].dmarx_buf_size - s_uart_dev[uart_id].last_dmarx_size;  fifo_write(&s_uart_dev[uart_id].rx_fifo,         (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);  s_uart_dev[uart_id].last_dmarx_size = 0; }

DMA通道buf半满场景计算

接收数据大小 = DMA通道接收总数据大小 - 上一次接收的总数据大小 DMA通道接收总数据大小 = DMA通道buf大小 - DMA通道buf剩余空间大小

DMA通道buf半满中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_half_done_isr(uint8_t uart_id) {    uint16_t recv_total_size;    uint16_t recv_size;    if(uart_id == 0)  {     recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();  }  else if (uart_id == 1)  {   recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();  }  recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;    fifo_write(&s_uart_dev[uart_id].rx_fifo,         (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);  s_uart_dev[uart_id].last_dmarx_size = recv_total_size;/* 记录接收总数据大小 */ }

串口空闲中断场景计算

串口空闲中断场景的接收数据计算与“DMA通道buf半满场景”计算方式是一样的。

串口空闲中断处理函数:

左右滑动查看全部代码>>>

void uart_dmarx_idle_isr(uint8_t uart_id) {    uint16_t recv_total_size;    uint16_t recv_size;    if(uart_id == 0)  {     recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();  }  else if (uart_id == 1)  {   recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();  }  recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;  s_UartTxRxCount[uart_id*2+1] += recv_size;  fifo_write(&s_uart_dev[uart_id].rx_fifo,         (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);  s_uart_dev[uart_id].last_dmarx_size = recv_total_size; }

注:串口空闲中断处理函数,除了将数据拷贝到串口接收fifo中,还可以增加特殊处理,如作为串口数据传输完成标识、不定长度数据处理等等。

5.3.2 接收数据偏移地址

将有效数据拷贝到fifo中,除了需知道有效数据大小外,还需知道数据存储于DMA 接收buf的偏移地址。

有效数据偏移地址只需记录上一次接收的总大小即,可,在DMA通道buf全满中断处理函数将该值清零,因为下一次数据将从buf的开头存储。

在DMA通道buf溢满中断处理函数中将数据偏移地址清零:

void uart_dmarx_done_isr(uint8_t uart_id) {   /* todo */  s_uart_dev[uart_id].last_dmarx_size = 0; }

5.4 应用读取串口数据方法

经过前面的处理步骤,已将串口数据拷贝至接收fifo,应用程序任务只需从fifo获取数据进行处理。前提是,处理效率必须大于DAM接收搬运数据的效率,否则导致数据丢失或者被覆盖处理。

6 串口DMA发送

5.1 基本流程

STM32

串口发送流程图

5.2 相关配置

关键步骤

【1】初始化串口

【2】使能串口DMA发送模式

【3】配置DMA发送通道,这一步无需在初始化设置,有数据需要发送时才配置使能DMA发送通道

UART2 DMA模式发送配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:

串口发送是,DMA通道工作模式设为单次模式(正常模式),每次需要发送数据时重新配置DMA

使能DMA通道传输完成中断,利用该中断信息处理一些必要的任务,如清空发送状态、启动下一次传输

启动DMA通道前清空相关状态标识,防止首次传输错乱数据

左右滑动查看全部代码>>>

void bsp_uart2_dmatx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel4);  DMA_Cmd(DMA1_Channel4, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->TDR);/* UART2发送数据地址 */  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;  /* 发送数据buf */  DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */  DMA_InitStructure.DMA_BufferSize    = mem_size;    /* 发送数据buf大小 */  DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal;   /* 单次模式 */  DMA_InitStructure.DMA_Priority     = DMA_Priority_High;    DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel4, &DMA_InitStructure);    DMA_ITConfig(DMA1_Channel4, DMA_IT_TC|DMA_IT_TE, ENABLE); /* 使能传输完成中断、错误中断 */  DMA_ClearFlag(DMA1_IT_TC4); /* 清除发送完成标识 */  DMA_Cmd(DMA1_Channel4, ENABLE); /* 启动DMA发送 */ }

5.3 发送处理

串口待发送数据存于发送fifo中,发送处理函数需要做的的任务就是循环查询发送fifo是否存在数据,如存在则将该数据拷贝到DMA发送buf中,然后启动DMA传输。

前提是需要等待上一次DMA传输完毕,即是DMA接收到DMA传输完成中断信号"DMA_IT_TC"。

串口发送处理函数:

左右滑动查看全部代码>>>

void uart_poll_dma_tx(uint8_t uart_id) {    uint16_t size = 0;    if (0x01 == s_uart_dev[uart_id].status)     {         return;     }  size = fifo_read(&s_uart_dev[uart_id].tx_fifo, s_uart_dev[uart_id].dmatx_buf,       s_uart_dev[uart_id].dmatx_buf_size);  if (size != 0)  {         s_UartTxRxCount[uart_id*2+0] += size;     if (uart_id == 0)   {             s_uart_dev[uart_id].status = 0x01; /* DMA发送状态 */      bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);   }   else if (uart_id == 1)   {             s_uart_dev[uart_id].status = 0x01; /* DMA发送状态,必须在使能DMA传输前置位,否则有可能DMA已经传输并进入中断 */    bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);   }  } }

注意发送状态标识,必须先置为“发送状态”,然后启动DMA 传输。如果步骤反过来,在传输数据量少时,DMA传输时间短,“DMA_IT_TC”中断可能比“发送状态标识置位”先执行,导致程序误判DMA一直处理发送状态(发送标识无法被清除)。

注:关于DMA发送数据启动函数,有些博客文章描述只需改变DMA发送buf的大小即可;经过测试发现,该方法在发送数据量较小时可行,数据量大后,导致发送失败,而且不会触发DMA发送完成中断。因此,可靠办法是:每次启动DMA发送,重新配置DMA通道所有参数。该步骤只是配置寄存器过程,实质上不会占用很多CPU执行时间。

DMA传输完成中断处理函数:

void uart_dmatx_done_isr(uint8_t uart_id) {   s_uart_dev[uart_id].status = 0; /* 清空DMA发送状态标识 */ }

上述串口发送处理函数可以在几种情况调用:

主线程任务调用,前提是线程不能被其他任务阻塞,否则导致fifo溢出

void thread(void) {     uart_poll_dma_tx(DEV_UART1);     uart_poll_dma_tx(DEV_UART2); }

定时器中断中调用

void TIMx_IRQHandler(void) {     uart_poll_dma_tx(DEV_UART1);     uart_poll_dma_tx(DEV_UART2); }

DMA通道传输完成中断中调用

void DMA1_Channel4_5_IRQHandler(void) {  if(DMA_GetITStatus(DMA1_IT_TC4))  {   UartDmaSendDoneIsr(UART_2);   DMA_ClearFlag(DMA1_FLAG_TC4);   uart_poll_dma_tx(DEV_UART2);  } }

每次拷贝多少数据量到DMA发送buf:

关于这个问题,与具体应用场景有关,遵循的原则就是:只要发送fifo的数据量大于等于DMA发送buf的大小,就应该填满DMA发送buf,然后启动DMA传输,这样才能充分发挥会DMA性能。

因此,需兼顾每次DMA传输的效率和串口数据流实时性,参考着几类实现:

周期查询发送fifo数据,启动DMA传输,充分利用DMA发送效率,但可能降低串口数据流实时性

实时查询发送fifo数据,加上超时处理,理想的方法

在DMA传输完成中断中处理,保证实时连续数据流

6 串口设备

6.1 数据结构

/* 串口设备数据结构 */ typedef struct {  uint8_t status;   /* 发送状态 */  _fifo_t tx_fifo;  /* 发送fifo */  _fifo_t rx_fifo;  /* 接收fifo */  uint8_t *dmarx_buf;  /* dma接收缓存 */  uint16_t dmarx_buf_size;/* dma接收缓存大小*/  uint8_t *dmatx_buf;  /* dma发送缓存 */  uint16_t dmatx_buf_size;/* dma发送缓存大小 */  uint16_t last_dmarx_size;/* dma上一次接收数据大小 */ }uart_device_t;

6.2 对外接口

左右滑动查看全部代码>>>

/* 串口注册初始化函数 */ void uart_device_init(uint8_t uart_id) {    if (uart_id == 1)  {   /* 配置串口2收发fifo */   fifo_register(&s_uart_dev[uart_id].tx_fifo, &s_uart2_tx_buf[0],                        sizeof(s_uart2_tx_buf), fifo_lock, fifo_unlock);   fifo_register(&s_uart_dev[uart_id].rx_fifo, &s_uart2_rx_buf[0],                        sizeof(s_uart2_rx_buf), fifo_lock, fifo_unlock);      /* 配置串口2 DMA收发buf */   s_uart_dev[uart_id].dmarx_buf = &s_uart2_dmarx_buf[0];   s_uart_dev[uart_id].dmarx_buf_size = sizeof(s_uart2_dmarx_buf);   s_uart_dev[uart_id].dmatx_buf = &s_uart2_dmatx_buf[0];   s_uart_dev[uart_id].dmatx_buf_size = sizeof(s_uart2_dmatx_buf);   bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf,            sizeof(s_uart2_dmarx_buf));   s_uart_dev[uart_id].status  = 0;  } } /* 串口发送函数 */ uint16_t uart_write(uint8_t uart_id, const uint8_t *buf, uint16_t size) {  return fifo_write(&s_uart_dev[uart_id].tx_fifo, buf, size); } /* 串口读取函数 */ uint16_t uart_read(uint8_t uart_id, uint8_t *buf, uint16_t size) {  return fifo_read(&s_uart_dev[uart_id].rx_fifo, buf, size); }

7 相关文章

依赖的fifo参考该文章:

通用环形缓冲区模块:

https://acuity.blog.csdn.net/article/details/78902689

8 完整源码

代码仓库:

https://github.com/Prry/stm32f0-uart-dma

串口&DMA底层配置:

左右滑动查看全部代码>>>

#include  #include  #include  #include "stm32f0xx.h" #include "bsp_uart.h" /**  * @brief    * @param    * @retval   */ static void bsp_uart1_gpio_init(void) {     GPIO_InitTypeDef    GPIO_InitStructure; #if 0  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);       GPIO_PinAFConfig(GPIOB, GPIO_PinSource6, GPIO_AF_0);     GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_0);     GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_6 | GPIO_Pin_7;     GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;  GPIO_InitStructure.GPIO_OType  = GPIO_OType_PP;     GPIO_InitStructure.GPIO_Speed   = GPIO_Speed_Level_3;     GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;     GPIO_Init(GPIOB, &GPIO_InitStructure); #else  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);       GPIO_PinAFConfig(GPIOB, GPIO_PinSource9, GPIO_AF_1);     GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_1);     GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_9 | GPIO_Pin_10;     GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;  GPIO_InitStructure.GPIO_OType  = GPIO_OType_PP;     GPIO_InitStructure.GPIO_Speed   = GPIO_Speed_Level_3;     GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;     GPIO_Init(GPIOA, &GPIO_InitStructure); #endif } /**  * @brief    * @param    * @retval   */ static void bsp_uart2_gpio_init(void) {  GPIO_InitTypeDef GPIO_InitStructure;    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOB, ENABLE);    GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_1);  GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_1);    GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3;  GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_AF;  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;  GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_UP;  GPIO_Init(GPIOA, &GPIO_InitStructure); } /**  * @brief    * @param    * @retval   */ void bsp_uart1_init(void) {  USART_InitTypeDef USART_InitStructure;  NVIC_InitTypeDef NVIC_InitStructure;    bsp_uart1_gpio_init();    /* 使能串口和DMA时钟 */  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);  RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);    USART_InitStructure.USART_BaudRate            = 57600;  USART_InitStructure.USART_WordLength          = USART_WordLength_8b;  USART_InitStructure.USART_StopBits            = USART_StopBits_1;  USART_InitStructure.USART_Parity              = USART_Parity_No;  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;  USART_InitStructure.USART_Mode                = USART_Mode_Rx | USART_Mode_Tx;  USART_Init(USART1, &USART_InitStructure);    USART_ITConfig(USART1, USART_IT_IDLE, ENABLE); /* 使能空闲中断 */  USART_OverrunDetectionConfig(USART1, USART_OVRDetection_Disable);    USART_Cmd(USART1, ENABLE);  USART_DMACmd(USART1, USART_DMAReq_Rx|USART_DMAReq_Tx, ENABLE); /* 使能DMA收发 */  /* 串口中断 */  NVIC_InitStructure.NVIC_IRQChannel         = USART1_IRQn;  NVIC_InitStructure.NVIC_IRQChannelPriority = 2;  NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;  NVIC_Init(&NVIC_InitStructure);  /* DMA中断 */    NVIC_InitStructure.NVIC_IRQChannel      = DMA1_Channel2_3_IRQn;           NVIC_InitStructure.NVIC_IRQChannelPriority = 0;   NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;    NVIC_Init(&NVIC_InitStructure); } /**  * @brief    * @param    * @retval   */ void bsp_uart2_init(void) {  USART_InitTypeDef USART_InitStructure;  NVIC_InitTypeDef NVIC_InitStructure;    bsp_uart2_gpio_init();    /* 使能串口和DMA时钟 */  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);  RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);  USART_InitStructure.USART_BaudRate            = 57600;  USART_InitStructure.USART_WordLength          = USART_WordLength_8b;  USART_InitStructure.USART_StopBits            = USART_StopBits_1;  USART_InitStructure.USART_Parity              = USART_Parity_No;  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;  USART_InitStructure.USART_Mode                = USART_Mode_Rx | USART_Mode_Tx;  USART_Init(USART2, &USART_InitStructure);    USART_ITConfig(USART2, USART_IT_IDLE, ENABLE); /* 使能空闲中断 */  USART_OverrunDetectionConfig(USART2, USART_OVRDetection_Disable);    USART_Cmd(USART2, ENABLE);  USART_DMACmd(USART2, USART_DMAReq_Rx|USART_DMAReq_Tx, ENABLE);  /* 使能DMA收发 */  /* 串口中断 */  NVIC_InitStructure.NVIC_IRQChannel         = USART2_IRQn;  NVIC_InitStructure.NVIC_IRQChannelPriority = 2;  NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;  NVIC_Init(&NVIC_InitStructure);  /* DMA中断 */  NVIC_InitStructure.NVIC_IRQChannel         = DMA1_Channel4_5_IRQn;           NVIC_InitStructure.NVIC_IRQChannelPriority = 0;   NVIC_InitStructure.NVIC_IRQChannelCmd      = ENABLE;    NVIC_Init(&NVIC_InitStructure); } void bsp_uart1_dmatx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel2);  DMA_Cmd(DMA1_Channel2, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART1->TDR);  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;   DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */  DMA_InitStructure.DMA_BufferSize    = mem_size;   DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal;   DMA_InitStructure.DMA_Priority     = DMA_Priority_High;   DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel2, &DMA_InitStructure);    DMA_ITConfig(DMA1_Channel2, DMA_IT_TC|DMA_IT_TE, ENABLE);   DMA_ClearFlag(DMA1_IT_TC2); /* 清除发送完成标识 */  DMA_Cmd(DMA1_Channel2, ENABLE);  } void bsp_uart1_dmarx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel3);   DMA_Cmd(DMA1_Channel3, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART1->RDR);  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;   DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */  DMA_InitStructure.DMA_BufferSize    = mem_size;   DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular;   DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh;   DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel3, &DMA_InitStructure);   DMA_ITConfig(DMA1_Channel3, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、全满、错误中断 */  DMA_ClearFlag(DMA1_IT_TC3);  DMA_ClearFlag(DMA1_IT_HT3);  DMA_Cmd(DMA1_Channel3, ENABLE);  } uint16_t bsp_uart1_get_dmarx_buf_remain_size(void) {  return DMA_GetCurrDataCounter(DMA1_Channel3); /* 获取DMA接收buf剩余空间 */ } void bsp_uart2_dmatx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel4);  DMA_Cmd(DMA1_Channel4, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->TDR);  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;   DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */  DMA_InitStructure.DMA_BufferSize    = mem_size;   DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal;   DMA_InitStructure.DMA_Priority     = DMA_Priority_High;   DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel4, &DMA_InitStructure);    DMA_ITConfig(DMA1_Channel4, DMA_IT_TC|DMA_IT_TE, ENABLE);   DMA_ClearFlag(DMA1_IT_TC4); /* 清除发送完成标识 */  DMA_Cmd(DMA1_Channel4, ENABLE);  } void bsp_uart2_dmarx_config(uint8_t *mem_addr, uint32_t mem_size) {    DMA_InitTypeDef DMA_InitStructure;    DMA_DeInit(DMA1_Channel5);   DMA_Cmd(DMA1_Channel5, DISABLE);  DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->RDR);  DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;   DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */  DMA_InitStructure.DMA_BufferSize    = mem_size;   DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable;   DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable;   DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte;   DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;  DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular;   DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh;   DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable;   DMA_Init(DMA1_Channel5, &DMA_InitStructure);   DMA_ITConfig(DMA1_Channel5, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、全满、错误中断 */  DMA_ClearFlag(DMA1_IT_TC5);  DMA_ClearFlag(DMA1_IT_HT5);  DMA_Cmd(DMA1_Channel5, ENABLE);  } uint16_t bsp_uart2_get_dmarx_buf_remain_size(void) {  return DMA_GetCurrDataCounter(DMA1_Channel5); /* 获取DMA接收buf剩余空间 */ }

压力测试:

1.5Mbps波特率,串口助手每毫秒发送1k字节数据,stm32f0 DMA接收数据,再通过DMA发送回串口助手,毫无压力。

1.5Mbps波特率,可传输大文件测试,将接收数据保存为文件,与源文件比较。

串口高波特率测试需要USB转TLL工具及串口助手都支持才可行,推荐CP2102、FT232芯片的USB转TTL工具。

1.5Mbps串口回环压力测试

原文链接:https://blog.csdn.net/qq_20553613/article/details/108367512

 

责任编辑:xj

原文标题:一个严谨的STM32串口DMA发送&接收(1.5Mbps波特率)机制

文章出处:【微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分