正反馈回路和非最小相位系统根轨迹

应用电子电路

902人已加入

描述

正反馈回路和非最小相位系统根轨迹

4.7.1 正反馈回路根轨迹

⒈引言:
前面介绍的绘制根迹的依据、法则,都是针对负反馈系统的。对于正反馈,前面的依据、规则,需要作些修改,修改以后的规则,可被用来画正反馈回路的根迹。


⒉修改内容:


⑴.作图依据:


①.特征方程:



②.幅角条件:故称零度根轨迹。


③.幅值条件:和前面一样。


⑵.作图规则:


①.实轴上根迹:为所在线段的右面有偶数个开环零、极点。


②.(n-m)条渐近线倾角: k=0,1,2


③.根迹的出射角、入射角:

⒊结论:

按零度根轨迹规则,绘制正反馈回路根轨迹,其步骤同负反馈。下面举例说明。


例4-6 设一反馈系统内回路为正反馈,如图4-20所示,其开环传递函数为:

正反馈
图4-20

试绘制其内回路根轨迹。

图4-20

⑴.常规方法

①.两条根迹分支:分别起始于两个开环极点-1+j, -1-j,终止于s平面∞处。

②.实轴上根迹:因为实轴无开环零、极点,所以整条实轴是根迹。

③.两条渐近线之倾角: 正反馈

④.开环极点-1+j的出射角: 正反馈

⑤.会合点:由公式 正反馈

⑥.复平面上的根迹: 由幅角条件可知,两个开环极点之间的连线是根迹。

⑦.所求根迹,如图4-21所示。

⑵. “MATLAB”方法

解本题的MATLAB程序exe46.m:

n=[-1];
d=[1 2 2];
rlocus(n,d)
title(‘4-21’)

执行本程序,可得正反馈根轨迹图4-21

正反馈
图4-21

4.7.2 非最小相位系统之根迹


所谓非最小相位系统:

如果系统的所有极点和零点均位于s左半平面,则系统称为最小相位系统。如果系统至少有一个极点或零点位于s右半平面,则系统称为非最小相位系统。对于非最小相位系统之根迹绘制,要注意其幅角条件的变化。

例4-7 状态空间模型的概念说明

设一非最小相位系统如图4-22所示,试作出其根迹。

正反馈
图4-22

⑴.常规方法

本系统的幅角条件为:

正反馈 正反馈正反馈

正反馈正反馈


正反馈

据上面方程可以作出如图4-23所示
根轨迹。

⑵.“MATLAB”方法

解本题的MATLAB程序exe47.m:

n=[-1 1];
d=[1 2 0];
rlocus(n,d)
title(‘4-23’)

执行本程序,可得非最小相位系统根轨迹,如图4-23所示。

图4-23

⑶.附言:

从这个系统的根轨迹图,可以看出当根增益 小于2时,系统是稳定的。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分