频率响应法-相对稳定性分析

应用电子电路

898人已加入

描述

频率响应法-相对稳定性分析

为了使控制系统能可靠地工作,不但要求它能稳定,而且还希望有足够的稳定裕量,使系统在环境发生变化或存在干扰的情况下仍能工作,这即为相对稳定性的概念。

在讨论系统的稳定裕量时,首先要假定开环系统是稳定的,是最小相位系统,即开环系统的零、极点均仅位于s的左半平面,否则讨论系统的稳定裕量是无意义的。


频率响应
图5-49 I型系统奈氏图

为了说明相对稳定性的概念,图5-49为一典型的I型系统频率响应 曲线,其开环系统的传递函数为:频率响应 。根据奈氏判据可知,当频率响应 时,系统不稳定,奈氏曲线包围(-1,j0)点;当频率响应 时,系统产生等幅振荡,奈氏曲线经过(-1,j0)点;当频率响应 时,系统稳定,奈氏曲线不包围(-1,j0)点。因此直观地看,对于开环稳定的系统,要求闭环系统有一定的稳定性,不仅要求频率响应 的幅频特性不包围(-1,j0)点,而且应与该点有一定的距离,即有一定的稳定裕量。

衡量闭环系统相对稳定性的具体指标有幅值裕量频率响应 和相位裕量频率响应 。在Matlab中,相应地有专门的函数来求取上述指标:Margin。具体用法参见下面的例子。

5.5.1 用奈氏图表示相位裕量和幅值裕量

1、 相位裕量

设一开环稳定的系统的奈氏曲线频率响应 负实轴相交于G点,与单位圆相交于C点,如图5-50。对应于频率响应 时的频率频率响应 (交点C)称为增益穿越频率,又称剪切频率或交界频率。在剪切频率频率响应 处,使系统达到临界稳定状态时所能接受的附加相位迟后角,定义为相位裕量,用频率响应 表示之。对于任何系统,相位裕量频率响应 的算式为

频率响应
(5-54)

式中,频率响应 是开环频率特性在剪切频率频率响应 处的相位。

频率响应
图5-50 稳定系统的奈氏曲线


不难理解,对于开环稳定的系统,若频率响应 ,表示频率响应 曲线包围(-1,j0)点,相应的闭环系统是不稳定的;反之,若 ,则相应的闭环系统是稳定的。一般频率响应 越大,系统的相对稳定性也就越好。因为系统的参数并非绝对不变,如果 频率响应太小,就有可能因参数的变化而使奈奎斯特曲线包围(-1,j0)点,即导致系统不稳定。

2、 幅值裕量

幅值裕量是系统相对稳定性的另一度量指标。如图5-50所示,开环频率特性的相角频率响应 时的频率频率响应 (交点G)处,频率响应 称为相位穿越频率,又称为相位交界频率。开环幅值频率响应 的倒数称为增益裕量,用频率响应 表示。即

频率响应
(5-55)

上式表示系统在变到临界稳定时,系统的增益能增大多少。

由奈奎斯特稳定判据可知,对于最小相位系统,其闭环稳定的充要条件是频率响应 曲线不包围(-1,j0)点,即频率响应 曲线与其负实轴交点处的模小于1,此时对应的频率响应 。反之,对于不稳定的系统,其 ,如图5-51所示,闭环系统是不稳定的。

频率响应
图5-51 不稳定系统的奈氏曲线

5.5.2 用伯德图表示相位裕量和幅值裕量

上述的相位裕量和幅值裕量也可在对数幅相图(Bode图)上表示。对应于图5-50,其Bode图如图5-52所示。图5-50中的增益穿越频率频率响应 对应于图5-52的零分贝线上的点,即开环对数幅频特性曲线与频率响应 轴的交点;图5-50中相位穿越频率频率响应 的点在Bode图上是对应相角频率响应 的点,即相频曲线与频率响应 水平线的交点。从图5-50可见,相频特性曲线上对应于增益穿越频率频率响应 的点位于频率响应 水平线的上方。

频率响应
图5-52 稳定系统的Bode图

频率响应
图5-53 不稳定系统的Bode图

在Bode图上,增益裕量常用分贝数表示,即

(5-56)

上式表示系统在到达临界稳定前,允许系统增益增大的倍数。对于稳定的系统,由于频率响应 <1,即频率响应 为负,由式(5-56)可知,增益裕量为正,这时对数幅频特性曲线上对应频率响应 的点在频率响应 轴下方,如图5-52;当系统不稳定时,相应地,可将图5-51绘制在Bode图上,如图5-53,这时相位裕量和幅值裕量均是负的。

增益裕量和相位裕量通常作为设计控制系统的频域性能指标。大的增益裕量和相位裕量表明控制系统是非常稳定的,但此时控制系统的响应速度将是非常慢的,而当增益裕量接近1或相位裕量接近零时,则对应一个高度振荡的系统。因此从工程的角度出发,一般控制系统设计时采用如下的裕量范围是比较合适的:频率响应频率响应频率响应 之间,增益裕量大于6dB。

同时需要指出,单独使用增益裕量或相位裕量作性能分析,都不足以说明系统的相对稳定性,必须同时给出这两个稳定裕量。对于大多数控制系统来说,这两个指标是统一的,但有时情况并非如此,图5-54a、图5-54b分别表示了这两种情况下的频率特性。

频率响应
图5-54 开环控制系统的奈氏图
(a) 好的幅值裕量和差的相角裕量
(b) 好的相角裕量和差的幅值裕量

例5-10 试求:(1)K=1时系统的相位裕量和增益裕量。(2)要求通过增益K的调整,使系统的增益裕量频率响应 ,相位裕量 。

例5-10 试求:(1)K=1时系统的相位裕量和增益裕量。(2)要求通过增益K的调整,使系统的增益裕量频率响应 ,相位裕量 。

已知一单位反馈系统的开环传递函数为

频率响应

解  (1)基于在频率响应 处的开环频率特性的相角为

频率响应

由三角函数的性质,有

频率响应

求得频率响应

同时,在 频率响应处的开环对数幅值为

频率响应

根据K=1时的开环系统传递函数,可知系统的频率响应 ,从而

频率响应

此小题也可用Matlab直接求解。

g=tf(1,conv([1,0],conv([0.2,1],[0.05,1])))

Transfer function:
1
-----------------------
0.01 s^3 + 0.25 s^2 + s

margin(g)

(2)由题意得频率响应 ,即 。在 处的对数幅值为

频率响应

上式简化后为

解之得,K=2.5。

  根据 的要求,则得

利用三角函数的性质,可求得 。于是有

求解上式得 。不难看出,K取2.5就能同时满足 和 的要求。

5.5.3 对数幅频特性中频段与系统动态性能的关系

在分析控制系统的开环对数幅相频率特性时,习惯上将频率范围分为三个频段:低频段、中频段和高频段。其中低频段反映了控制系统的静态特性,关于此点在5.3.4中我们作了分析;中频段则反映了系统的动态特性,这是控制设计中一个非常关心的问题,这将在下面作介绍;高频段则主要反映了系统的抗干扰能力,对动态性能影响不大,将不作介绍。

图5-56 对数幅频特性三个频段划分

中频段的主要参数有:剪切频率 、相位裕量 和中频宽度h。对于图5-56所示系统,其中频宽度一般定义在斜率等于 、靠近 处:

频率响应
(5-57)

一般要求最小相位系统的开环对数幅频特性在 处的斜率等于 。如果在该处的斜率等于或小于为 ,则对应的系统可能不稳定,或者系统即使稳定,但因相位裕量较小,系统的稳定性也较差。下面通过二阶系统和三阶系统对上述结论进行说明。

设一标准二阶系统的开环传递函数为:

(5-58)

式中,自然振荡频率频率响应 ,阻尼比 ,其中 为转角频率,则:

(1) 当 时, ,如图5-57a示,阶跃响应是衰减较慢的振荡过程;

(2) 当 时, ,如图5-57b示,阶跃响应是衰减较快的振荡过程;

(3) 当 时, ,如图5-57c示,阶跃响应是接近无振荡的非周期过程;

图5-57 二阶系统幅频特性和单位阶跃响应

再设一个三阶系统的开环传函数为:

(5-59)

取K=0.1,1,10,100,得到如图5-58的幅频曲线a,b,c,d。由图可见。当 时,式(5-59)的对数幅频特性曲线如图5-58所示的曲线 。剪切频率 在斜率为 的区段内,对照图5-58下部的相频特性曲线可知,相位裕量为 ,因此闭环系统是稳定的。若开环放大系数K值减小,则对数幅频特性曲线向下垂直移动。这时剪切频率 向左移动[注意,K变化时,系统的相频特性曲线 不变。由图5-58可知,相位裕量 将增大。当剪切频率 移至斜率为 的区段内时,相位裕量 将更大,如图5-58的曲线b所示。反之,增大开环放大系数K,剪切频率 将向右移动,相位裕量 将减小,当 移至 时( 为相位穿越频率), ,闭环系统处于临界稳定。当 时, ,这时对数幅频特性曲线的中频段斜率仍为频率响应 ,如图5-58曲线c所示。因这时 为负值,所以闭环系统已不稳定了。如果开环放大系数K继续加大,使剪切频率频率响应 落在对数幅频特性曲线斜率为频率响应 的区段内,如图5-58曲线b所示。这时相位裕量频率响应 “负”得更历害,系统将更加不稳定。

频率响应

图5-58 二阶系统幅频特性和单位阶跃响应

根据上述分析,可得到如下结论:为使闭环系统稳定且系统的阶跃响应无超调量或或超调很小,应使剪切频率频率响应 位于斜率为频率响应 的线段上,同时要有一定的中频宽度,中频段越宽,则阶跃响应越接近非周期过程。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分