谷歌TensorFlow 2.4 Mac M1优化版发布

电子说

1.3w人已加入

描述

谷歌表示,借助 TensorFlow 2,可在跨平台、设备和硬件上实现一流的训练性能,从而使开发者、工程师和研究人员能够在他们喜欢的平台上工作。IT之家获悉,现在,TensorFlow 用户可以在搭载 Apple 全新 M1 芯片或 Intel 芯片 Mac 上的 利用 TensorFlow 2.4 Mac 优化版和新的 ML Compute 框架来加快训练速度。这些改进提升了 Apple 开发者通过 TensorFlow Lite 在 iOS 上执行 TensorFlow 的能力,继续展现了 TensorFlow 在 Apple 硬件上支持高性能 ML 执行方面的广度和深度。

采用 ML Compute 时 Mac 上的性能

Apple 近期发布了搭载全新 M1 芯片的系列 Mac 产品,如此一来,Apple 针对 Mac 优化的 TensorFlow 2.4 版能够充分利用 Mac 的强大功能并在性能上大幅提升。

ML Compute 是 Apple 的新框架,可以在 Mac 上训练 TensorFlow 模型,现在,您可以在搭载 M1 和 Intel 芯片的 Mac 上实现加速的 CPU 和 GPU 训练。

例如,M1 芯片搭载功能强大的新型 8 核 CPU 和多达 8 核 GPU,均针对 Mac 上的 ML 训练任务进行了优化。在下图中,您可以看到针对 Mac 优化的 TensorFlow 2.4 如何在搭载 M1 和 Intel 芯片的通用型号 Mac 上实现巨大的性能提升。

▲在搭载 M1 和 Intel 芯片的 13 英寸 MacBook Pro 上使用 ML Compute 时对常见模型训练影响,以每批秒数显示,数字越小表示训练时间越短

▲在搭载 Intel 芯片的 2019 Mac Pro 上使用 ML Compute 时对常见模型的训练影响,以每批秒数显示,数字越小表示训练时间越短

开始使用针对 Mac 优化的 TensorFlow

用户无需对其现有的 TensorFlow 脚本进行任何更改即可使用 ML Compute 用作 TensorFlow 和 TensorFlow 插件的后端。

首先,请访问 Apple 的 GitHub 仓库,了解如何下载和安装 Mac 优化的 TensorFlow 2.4。

在不久的将来,谷歌会将该版本集成到 TensorFlow master 分支中,使用户能更轻松地进行此类更新,从而获得这些性能数据。

您可以在 Apple 的机器学习网站上了解 ML Compute 框架细节。

责任编辑:haq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分