MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。
作者:开心的派大星
首发:微信公众号:NeuroMem
转自:https://github.com/alibaba/MNN/edit/master/README_CN.md
MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。
Tensorflow
、Caffe
、ONNX
等主流模型文件格式,支持CNN
、RNN
、GAN
等常用网络。Tensorflow
Op、34个Caffe
Op;各计算设备支持的MNN Op数:CPU 71个,Metal 55个,OpenCL 29个,Vulkan 31个。OpenCL
、Vulkan
、OpenGL
三套方案,尽可能多地满足设备需求,针对主流GPU(Adreno
和Mali
)做了深度调优。
MNN可以分为Converter和Interpreter两部分。
Converter由Frontends和Graph Optimize构成。前者负责支持不同的训练框架,MNN当前支持Tensorflow(Lite)、Caffe和ONNX(PyTorch/MXNet的模型可先转为ONNX模型再转到MNN);后者通过算子融合、算子替代、布局调整等方式优化图。
Interpreter由Engine和Backends构成。前者负责模型的加载、计算图的调度;后者包含各计算设备下的内存分配、Op实现。在Engine和Backends中,MNN应用了多种优化方案,包括在卷积和反卷积中应用Winograd算法、在矩阵乘法中应用Strassen算法、低精度计算、Neon优化、手写汇编、多线程优化、内存复用、异构计算等。
Apache 2.0
MNN参与人员:淘宝技术部、搜索工程团队、达摩院团队、优酷等集团员工。
MNN参考、借鉴了下列项目:
推荐阅读
欢迎关注公众号,关注模型压缩、低比特量化、移动端推理加速优化、部署。
审核编辑:符乾江
全部0条评论
快来发表一下你的评论吧 !