10个算法从业人员必须要知道的TensorFlow技巧

描述

首发:AI公园公众号
作者:Rohan Jagtap
编译:ronghuaiyang

导读

掌握这些可以更高效的模型的提高开发效率。

TensorFlow 2.x在构建模型和TensorFlow的整体使用方面提供了很多简单性。那么TF2有什么新变化呢?

使用Keras轻松构建模型,立即执行。

可在任何平台上进行强大的模型部署。

强大的研究实验。

通过清理过时的API和减少重复来简化API。

在本文中,我们将探索TF 2.0的10个特性,这些特性使得使用TensorFlow更加顺畅,减少了代码行数并提高了效率。

1(a). tf.data 构建输入管道

tf.data提供了数据管道和相关操作的功能。我们可以建立管道,映射预处理函数,洗牌或批处理数据集等等。

从tensors构建管道

 

>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])>>> iter(dataset).next().numpy()8

 

构建Batch并打乱

 

# Shuffle>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).shuffle(6)>>> iter(dataset).next().numpy()0# Batch>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).batch(2)>>> iter(dataset).next().numpy()array([8, 3], dtype=int32)# Shuffle and Batch>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).shuffle(6).batch(2)>>> iter(dataset).next().numpy()array([3, 0], dtype=int32)

 

把两个Datsets压缩成一个

 

>>> dataset0 = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])>>> dataset1 = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6])>>> dataset = tf.data.Dataset.zip((dataset0, dataset1))>>> iter(dataset).next()(, )

 

映射外部函数

 

def into_2(num):     return num * 2    >>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).map(into_2)>>> iter(dataset).next().numpy()16

 

1(b). ImageDataGenerator

这是tensorflow.keras API的最佳特性之一。ImageDataGenerator能够在批处理和预处理以及数据增强的同时实时生成数据集切片。

生成器允许直接从目录或数据目录中生成数据流。

ImageDataGenerator中关于数据增强的一个误解是,它向现有数据集添加了更多的数据。虽然这是数据增强的实际定义,但是在ImageDataGenerator中,数据集中的图像在训练的不同步骤被动态地变换,使模型可以在未见过的有噪数据上进行训练。

 

train_datagen = ImageDataGenerator(        rescale=1./255,        shear_range=0.2,        zoom_range=0.2,        horizontal_flip=True)

 

在这里,对所有样本进行重新缩放(用于归一化),而其他参数用于增强。

 

train_generator = train_datagen.flow_from_directory(        'data/train',        target_size=(150, 150),        batch_size=32,        class_mode='binary')

 

我们为实时数据流指定目录。这也可以使用dataframes来完成。

 

train_generator = flow_from_dataframe(    dataframe,    x_col='filename',    y_col='class',    class_mode='categorical',    batch_size=32)

 

_x/_col_参数定义图像的完整路径,而_y/_col_参数定义用于分类的标签列。

模型可直接用生成器来喂数据。需要指定_steps/_per/_epoch_参数,即_number/_of/_samples // batch/_size._

 

model.fit(    train_generator,    validation_data=val_generator,    epochs=EPOCHS,    steps_per_epoch=(num_samples // batch_size),    validation_steps=(num_val_samples // batch_size))

 

2. 使用tf.image做数据增强

数据增强是必要的。在数据不足的情况下,对数据进行更改并将其作为单独的数据点来处理,是在较少数据下进行训练的一种非常有效的方式。

tf.image API中有用于转换图像的工具,然后可以使用tf.data进行数据增强。

 

flipped = tf.image.flip_left_right(image)visualise(image, flipped)

 

上面的代码的输出

 

saturated = tf.image.adjust_saturation(image, 5)visualise(image, saturated)

 

上面的代码的输出

 

rotated = tf.image.rot90(image)visualise(image, rotated)

 

上面的代码的输出

 

cropped = tf.image.central_crop(image, central_fraction=0.5)visualise(image, cropped)

 

上面的代码的输出

3. TensorFlow Datasets

 

pip install tensorflow-datasets

 

这是一个非常有用的库,因为它包含了TensorFlow从各个领域收集的非常著名的数据集。

 

import tensorflow_datasets as tfdsmnist_data = tfds.load("mnist")mnist_train, mnist_test = mnist_data["train"], mnist_data["test"]assert isinstance(mnist_train, tf.data.Dataset)

 

tensorflow-datasets中可用的数据集的详细列表可以在:https://www.tensorflow.org/da...。

tfds提供的数据集类型包括:音频,图像,图像分类,目标检测,结构化数据,摘要,文本,翻译,视频。

4. 使用预训练模型进行迁移学习

迁移学习是机器学习中的一项新技术,非常重要。如果一个基准模型已经被别人训练过了,而且训练它需要大量的资源(例如:多个昂贵的gpu,一个人可能负担不起)。转移学习,解决了这个问题。预先训练好的模型可以在特定的场景中重用,也可以为不同的场景进行扩展。

TensorFlow提供了基准的预训练模型,可以很容易地为所需的场景扩展。

 

base_model = tf.keras.applications.MobileNetV2(    input_shape=IMG_SHAPE,    include_top=False,    weights='imagenet')

 

这个_base/_model_可以很容易地通过额外的层或不同的模型进行扩展。如:

 

model = tf.keras.Sequential([    base_model,    global_average_layer,    prediction_layer])

 

5. Estimators

估计器是TensorFlow对完整模型的高级表示,它被设计用于易于扩展和异步训练

预先制定的estimators提供了一个非常高级的模型抽象,因此你可以直接集中于训练模型,而不用担心底层的复杂性。例如:

 

linear_est = tf.estimator.LinearClassifier(    feature_columns=feature_columns)linear_est.train(train_input_fn)result = linear_est.evaluate(eval_input_fn)

 

这显示了使用tf.estimator. Estimators构建和训练estimator是多么容易。estimator也可以定制。

TensorFlow有许多estimator ,包括LinearRegressor,BoostedTreesClassifier等。

6. 自定义层

神经网络以许多层深网络而闻名,其中层可以是不同的类型。TensorFlow包含许多预定义的层(如density, LSTM等)。但对于更复杂的体系结构,层的逻辑要比基础的层复杂得多。对于这样的情况,TensorFlow允许构建自定义层。这可以通过子类化tf.keras.layers来实现。

 

class CustomDense(tf.keras.layers.Layer):    def __init__(self, num_outputs):        super(CustomDense, self).__init__()        self.num_outputs = num_outputs    def build(self, input_shape):        self.kernel = self.add_weight(            "kernel",            shape=[int(input_shape[-1]),            self.num_outputs]        )    def call(self, input):        return tf.matmul(input, self.kernel)

 

正如在文档中所述,实现自己的层的最好方法是扩展 tf.keras.Layer类并实现:

/__init/__,你可以在这里做所有与输入无关的初始化。

_build_,其中你知道输入张量的形状,然后可以做剩下的初始化工作。

_call_,在这里进行前向计算。

虽然kernel的初始化可以在*/_init/__中完成,但是最好在_build_中进行初始化,否则你必须在创建新层的每个实例上显式地指定_input/_shape*。

7. 自定义训练

tf.keras Sequential 和Model API使得模型的训练更加容易。然而,大多数时候在训练复杂模型时,使用自定义损失函数。此外,模型训练也可能不同于默认训练(例如,分别对不同的模型组件求梯度)。

TensorFlow的自动微分有助于有效地计算梯度。这些原语用于定义自定义训练循环。

 

def train(model, inputs, outputs, learning_rate):    with tf.GradientTape() as t:        # Computing Losses from Model Prediction        current_loss = loss(outputs, model(inputs))            # Gradients for Trainable Variables with Obtained Losses    dW, db = t.gradient(current_loss, [model.W, model.b])        # Applying Gradients to Weights    model.W.assign_sub(learning_rate * dW)    model.b.assign_sub(learning_rate * db)

 

这个循环可以在多个epoch中重复,并且根据用例使用更定制的设置。

8. Checkpoints

保存一个TensorFlow模型可以有两种方式:

SavedModel:保存模型的完整状态以及所有参数。这是独立于源代码的。model.save_weights('checkpoint')

Checkpoints

Checkpoints 捕获模型使用的所有参数的值。使用Sequential API或Model API构建的模型可以简单地以SavedModel格式保存。

然而,对于自定义模型,checkpoints是必需的。

检查点不包含模型定义的计算的任何描述,因此通常只有当源代码可用时,保存的参数值才有用。

保存 Checkpoint

 

checkpoint_path = “save_path”# Defining a Checkpointckpt = tf.train.Checkpoint(model=model, optimizer=optimizer)# Creating a CheckpointManager Objectckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)# Saving a Modelckpt_manager.save()

 

从 Checkpoint 加载模型

TensorFlow从被加载的对象开始,通过遍历带有带有名字的边的有向图来将变量与检查点值匹配。

 

if ckpt_manager.latest_checkpoint:    ckpt.restore(ckpt_manager.latest_checkpoint)

 

9. Keras Tuner

这是TensorFlow中的一个相当新的特性。

 

!pip install keras-tuner

 

超参数调优调优是对定义的ML模型配置的参数进行筛选的过程。在特征工程和预处理之后,这些因素是模型性能的决定性因素。

 

# model_builder is a function that builds a model and returns ittuner = kt.Hyperband(    model_builder,    objective='val_accuracy',     max_epochs=10,    factor=3,    directory='my_dir',    project_name='intro_to_kt')

 

除了HyperBand之外,BayesianOptimization和RandomSearch 也可用于调优。

 

tuner.search(    img_train, label_train,     epochs = 10,     validation_data=(img_test,label_test),     callbacks=[ClearTrainingOutput()])# Get the optimal hyperparametersbest_hps = tuner.get_best_hyperparameters(num_trials=1)[0]

 

然后,我们使用最优超参数训练模型:

 

model = tuner.hypermodel.build(best_hps)model.fit(    img_train,     label_train,     epochs=10,     validation_data=(img_test, label_test))

 

10. 分布式训练

如果你有多个GPU,并且希望通过分散训练循环在多个GPU上优化训练,TensorFlow的各种分布式训练策略能够优化GPU的使用,并为你操纵GPU上的训练。

tf.distribute.MirroredStrategy是最常用的策略。它是如何工作的呢?

所有的变量和模型图被复制成副本。

输入均匀分布在不同的副本上。

每个副本计算它接收到的输入的损失和梯度。

同步的所有副本的梯度并求和。

同步后,对每个副本上的变量进行相同的更新。

 

strategy = tf.distribute.MirroredStrategy()with strategy.scope():    model = tf.keras.Sequential([        tf.keras.layers.Conv2D(            32, 3, activation='relu',  input_shape=(28, 28, 1)        ),        tf.keras.layers.MaxPooling2D(),        tf.keras.layers.Flatten(),        tf.keras.layers.Dense(64, activation='relu'),        tf.keras.layers.Dense(10)    ])    model.compile(        los,        optimize,        metrics=['accuracy']    )

 

审核编辑 黄昊宇

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分