电子说
什么是“频响曲线”
“频响曲线”分解:“频”指“频率”,在声音表现中同“音调”;“响”则可以看作是扬声器系统(机械和电性)对输入电信号中“频”转换成声能的响应。而这种响应,由麦克风接收并经测试仪器运算后以dB SPL对数值的形式呈现出来。当很多个“频”的响应值连在一起,就成了有峰有谷的“曲线”,这种曲线称作为频率特性响应曲线,简称频响曲线。
音箱与频响曲线
音响系统或音箱产品的频响曲线是否要求平直?很多人在这个问题上争论,争论的焦点往往在于:好听的不一定平直,平直的不一定好听
音箱或者音响系统的频响曲线要求平直,到底是为什么呢?
音箱或者音响系统的频响曲线平直,其中的含义在于告诉用户,这个音箱或者系统,在某种条件下,对于输入进来的信号,在各个频段上的表现力(也就是对不同频段声音的增益量)都是大致相同的,既不突出(提升)哪些频段,也不亏待(衰减)哪些频段。你原来是多少,我就给你表现出多少。而曲线不平直的音箱或者系统呢,就是会在某些频段上的增益量不一致,对某些频段的表现过强(曲线上突出的地方,增益量大了)或者过弱(曲线上凹陷的地方,增益量小了)。如图:
比方说某个音箱在80赫兹附近的曲线比较突出,那么就说明,这只音箱对于80赫兹附近的频段表现力过强了,如果播放音乐,那么贝司的声音就会感觉重了。或者某只音箱的曲线在1000赫兹附近有凹陷,那就说明这只音箱对于1000赫兹附近的频段表现力弱了,对输入进来的信号中1000赫兹附近的频段输出的声压降低了,出来的声音也不是原来那样了。
频响曲线的平直度如何,其实就是告诉你这只音箱或者音响系统对于不同频段的声音信号的增益量差异。曲线越平直,就说明音箱或者音响系统各个频段的增益量就越接近相同。但是,音箱或系统对于输入的信号的各频频段增益量相同与好不好听并不是画等号的。为什么呢?因为增益量相同只是表达了对输入信号中各个频段的的声音的放大量相同,比如某个系统对全音频中各个频率的增益量都是30分贝,你发出1000赫兹的声音,声压级是80分贝,音箱发出的1000赫兹的声音的声压级就是80+30=110分贝。你发出的2000赫兹的声音的声压级是60分贝,那么音箱播放出来的2000赫兹的声音的声压级就是90分贝。没有经过系统放大的时候,你发出的1000赫兹的声音和2000赫兹的声音的声压级相差20分贝。那么通过这个对各个频段的增益量相同的系统,由音箱发出的1000赫兹的声音和2000赫兹的声音的声压级同样是相差了20分贝,队形保持不变,呵呵。但是,如果你这个系统对于1000赫兹的增益过大(曲线上突出了),不是30分贝而是40分贝,而且对于2000赫兹的增益量偏低(曲线上凹下去了),不是30分贝而是是20分贝。那么原本你发出的80分贝声压级的1000赫兹的声音,通过系统后,就发出了120分贝的声音,而原本你发出的60分贝2000赫兹的声音,通过系统后,就发出了80分贝的声音。经过系统前的1000赫兹和2000赫兹的声压级差异是20分贝,经过系统后1000赫兹和2000赫兹的声压级差别就变成了40分贝,这就不是原本的差异了,队形变了,这也是属于一种失真。所以频响曲线是否平直,只代表了某只音箱或者某个系统对于各个频段的声音的音量表现是否大致相同而已,而于音质无关。
至于好不好听,首先你的系统要在各个频段上的对于输入信号的增益量要大致相同(也就是曲线尽量平直),这样才能把原始信号中的各个频段的声音大小的比例放大后还原出来,起码是该强的要强,不该强的就要弱。能够真实反应声音的强弱了,这才算是个好的基础。要想好听,更重要的是在音质上做文章。音质烂了,再好的系统也是表现出烂的声音,不信你弄个牛B的音箱,用个几十块的MP3输入到调音台,并且把调音台输入增益开到头,播放从网上下载的MP3格式的音乐,听听出来的声音试试。而音质,是内在的东西,就不单单是曲线平直的问题了。曲线平直,只是表达了系统对音量的还原。那么对音质的还原,估计就是理想化的东西了。比如人家用史坦威钢琴用DPA话筒录制的钢琴曲,要通过音响把质感完全还原出来,那几乎是不可能的事情了。这就好比你听人家在你旁边拉小提琴,和你在音箱旁边听同样的人演奏的小提琴曲一样,就算你用了再好的音响,听起来总会有差异的。这就牵扯到音质还原度和声场还原度的问题了,而这些还原度那就不是说谁能用曲线表达了。而音质的高低,那就跟你的用料,你的工艺,设计师的技术和艺术修养有很大的关系了。大师用白玉雕琢的艺术品,跟街头工匠用石膏倒模出来的东西看起来能一样吗?
反过来说曲线平直,曲线平直就是系统或设备对输入信号中各个频段的音量强弱的还原度高。作为音响,这只是个基础性的指标,但是也是很重要的指标。比如一个音量还原度好的音响系统,输入的音源信号本身高中低等等各个声部音量比例和谐(比如录音大师录制的音乐大师级的作品,好像什么发烧天碟之类的。),通过音箱还原出来自然就感觉和谐。如果输入的信号是个只会狂喊乱叫的卡拉OK级别的歌手演唱的歌,原本就唱得就高中低音不和谐,从高还原度的音响系统出来那自然也不和谐。但是,还原度不好的系统,比如频响曲线在低频突起,中高频又有点凹陷的,可能把原本不是很强的贝司变强了,把本来该强的小号变弱了,播放原本各声部音量和谐的作品可能变得不和谐。但是,如果碰巧碰上本来把乐手把该强的贝司音弹弱了,或者把本来该弱的小号音吹强了的情况,负负得正,播放原本音量不和谐的作品,用这种还原度低的音箱可能反倒比还原度更高的音箱更和谐动听了。
另外, 对于音响产品而言,其实不光是音箱,功放、调音台以及其他周边设备,都有频响曲线。按照工业标准,都要求这些设备在未做调整的情况下,都要有平直的频响曲线,目的就是要求这些设备首先要尽可能对信号的特性中的音量强弱保持忠实还原的态度。假若你使用的均衡器,在没有调整,推子都打平的情况下,频响曲线就在80赫兹的地方高了,在1000赫兹的地方又低了,你还会要它吗?
耳机与频响曲线
过频响曲线看耳机的好坏不太容易。
耳机音膜中心为低频边缘为高频。
频响曲线的低频端为下降趋势,为了获得更多的低频动能,因此耳机中心的球形设计是为了增大他的表面积而获得低音,耳机中频的频响曲线比较平坦,是因为音膜表面的螺旋状纹路。
耳机高频端的频响曲线上有一个大锯齿,是因为音膜边缘有一个软环 是为了增加音膜弹性,因此软材料的共振频率下降,过了软环到了粘接边缘材料变硬,共振频率上升,形成一个大锯齿。每个耳机都有无法避免。
耳机高频端的频响曲线上有很多小锯齿,音膜支架和音膜边缘粘接有毛刺。和耳机制造工艺有关,如果支架和音膜一体化就不会有该问题。
知道了上述情况,我们在选择耳机时注重他的频响曲线,低端增益要大,高频端小锯齿要少,中频要平。
音质与频响曲线
影响音质的因素太多了。
首先来看看什么叫音质。音质指的是实际声波与原始波形的接近程度,即回放出来的实际声波与原音频文件所保存的波形越接近,则音质越好。假设有一个音频文件 A.wav,又有一个理想的录音设备,它可以将空气中的声音毫无损失地录下来,存为 B.wav,则这个 A.wav 与 B.wav (从时域和频域上都)越接近越好。
对一个系统(设备)来说,幅频响应和相频响应在一起才构成整个系统的响应,而一般说的频响曲线只是指幅频响应。
一个音频文件从手机里播放到被人听到需要经过哪些影响音质的过程。大致过程是这样的:音频文件 -》 操作系统的混音器(Mixer)-》 操作系统 DSP 算法(音效、重采样,可能会用到 DSP 芯片)-》 DAC -》 放大器 -》 耳机/音箱 -》 空气 -》 人耳。
鉴于空气和人耳是无法控制的,所以只研究到音箱/耳机出来的声音。这前面几乎每一步都会影响音质。
首先是操作系统的混音器,它负责的是将系统内各个播放声音的程序混合到一起,从而可以使各个程序同时发声而不会出现一个程序将输出设备独占而其他程序不能发声的情况。表现在代码上也就是做加法,把各个程序的输出加起来。如果只有一个程序在播放音乐那还好,但手机还要处理铃声和提醒声音等。加法是怎么做的呢?这取决于算法。如果是定点的加法,为了保证加完的值不会溢出,会先对两个数据进行右移再相加。浮点的情况更为复杂,而且因为现有大多音频文件都是 16 位定点格式,所以还要经过定点《-》浮点之间的相互转换,这个过程也会损失精度。总之,程序会通过牺牲精度来换取动态范围。而如果只有一个程序在输出呢?别忘了还有个调节音量的东西吧,那个就是给波形上的每个点乘以一个增益值(gain),乘法过程也是会有精度损失的。总的来说,混音器这一步的精度损失无法避免。但手机上除了输入和输出过程,中间都是浮点运算的,精度的损失一般不会超过 -90dB,一般是听不出来的。
然后是 DSP 算法部分。音效(低音增强、增加空间感等)这一部分是主观性的,不属于「音质」的范畴,就不讨论了。假设所有音效都已关闭,那唯一剩下的就是重采样。对手机来说,重采样的存在是由于一个 DSP 芯片往往只支持一种输出采样率,或者 DAC 只支持一种输入采样率,而大部分情况下这个采样率是 48kHz。这是由于如果要支持不同采样率,特别是像 44.1kHz 和 48kHz 这种不成整数关系的采样率,需要配备频率不同的晶振。由于各种原因,晶振产生 48kHz 的时钟频率更容易。然而,由于各种历史原因,目前的大部分音乐都是 44.1kHz 的,因此会经过一个 44.1kHz-》48kHz 的重采样。非整数倍的重采样是会大大损失精度的,不要以为采样率变高了音质就会变好。不经过重采样直接输出的才是最好的音质。重采样对音质的影响取决于重采样算法,劣质的算法可以导致严重失真。
接下来是 DAC,即数模转换器。这是对音质影响十分显著的一个模块。DAC 的频响也容易做到平直,但衡量 DAC 的音质还需要参考许多其他参数。DAC 的好坏基本可以就看芯片本身的厂商及型号等,所以没什么可说的。好的设备会用比较高端的 DAC。
然后是放大器。相对来说,这一部分还是比较容易做到平直的幅频曲线的。但相频则不一定。( 目前放大器的频响已经很容易做到平直)
最后是耳机/音箱。通常来说,它们的幅频曲线很难做到平直,这很大程度上是因为发声单元所能发出的频率高度与其尺寸成反比。所以根本不要指望耳塞式耳机能发出有效的低频。这也是头戴式耳机一般来说比耳塞式或者挂耳式的音质更好的主要原因。而对于音箱来说,往往会采用二分频、三分频,甚至多分频,即多个发声单元负责不同的频段,其中还会有滤波、处理频段连接等问题。从整个音频流来看,耳机/音箱才是对音质影响最大的部分。你手机里放的全都是无损音乐、手机支持直接输出 44.1kHz、DAC 用的是最好的芯片、放大器几乎没失真,结果你用了一副 50 元的街边摊上买的耳机,那音质就是个渣。
总的来看:
1.频响曲线能不能反映音质?
能。理论上来说越平直的频响曲线越好,系统响应越接近于直通。但光看一个频响曲线是十分不全面的。
2.放大器的频响曲线在多大程度上决定了音质?
很少。
3.对手机来说,有哪些影响音质的参数值得关注?
混音器和重采样算法,各个手机都一样或差不多。
放大器,比较重要,目前手机的放大器已经可以做到很好的系统响应,所以大家都差别不大。
DAC,比较重要,看芯片型号。
决定性的环节还是在你的回放设备,用个好点的耳机或音箱比什么都有效。
其他常用的评价音质的参数还有失真度、信噪比等。
音色与频响曲线
从“频”开始分析:我们在不同乐器中会发现同“音调”(频)的声音,其“音色”却不同,那么是什么因数决定了乐器音色呢?
答:是因为“音调”(频)里面包含的谐波成份不同。
我们知道,声音是振动产生的。而一个物体的来回振动,几乎不可能一直按照确定的周期来振动。也就是说当一个物体发声的同时,还会发出很多不同频率的波(谐波)。这许多不同频率的波由于相位差很小(波之间相隔时间非常短),人是无法单独分辨的,所以这些波会混合在一起给人一个整体的声音感受,而这个感受就叫做音色。
有人质疑,在实际的乐器中“音调”虽然相同,但是却难保在吹、拉、弹时,其对比的声压/响度能达到一致,所以我们听到的声音的感觉当然会不同。
为了排除这个观点,可以做一个实验:理论上,当两个声压级相同的声音叠加时,在参考轴的总声压级会增加3dB。我们取两个在同一频率声压级相同的扬声器单元叠加放声,然后与单独一个+3dB的单元对比听音。其最终结果是:声压级相同的声音所听到的声音,感觉仍然有很大差别。(这时只有在满足以下条件:即叠加的声压中谐波成份与单独一个+3dB的扬声器谐波成份相同时,给人的音色感才会不容易分辨)
既然乐器内每一个声音都包含很多个频率的声波,那我们又是如何分辨出音调(频率)的呢?
答:在一个声音中某一个频率的相对量最大的那个频率决定了声音的音调。比如说一个声音里面包含有3单位的444Hz(la音),1单位222Hz的频率,那么我们听到的就是la音。而有3单位的444Hz,1单位的333Hz的频率,那我们听起来仍然还是la音,只不过给人的音色感觉不同了。
在解释了“频”、“响”与“音”的关系,再来阐述一下在扬声器研发过程中对测试曲线应注意的一些问题(在此跳过低频共振和高频上限对音色的变化,着重讲述一下中频段声压级差的问题)。
1.在很多公司扬声器规格书上平均灵敏度一栏都会有如下标识,如:82dB±3dB。所以很多人在copy扬声器时,做到82dB的允许范围内,就认为完成了开发任务,结果样品被听音后判NG。
在dB SPL数值之间因为是对数的关系,这说明,在1个dB内还包含着一个相对比较宽的声压(强)范围。而人耳在较灵敏的频段是可以分 辨出1dB声压级的差异的。所以在研发过程中,中频段的dB SPL 应尽量控制在±0.5dB之内。
2.有一些工程师将SPL数值差异做到了1dB之内,甚至更为接近。此时,音色仍然感觉不同。这时应考虑测试环境和曲线表现的方式。当测试环境较差时,环境对测试麦克风的干扰较大,对同一个扬声器测试的几条曲线都会存在较大的误差,所以要多重复测试、排除环境的影响因数,然后再分析。
测试环境较好,例如在标准无响室,无人为操作失误,曲线又控制在1dB之内,这时需要再考虑一下曲线的不同取点数量和平滑模式。不同的取点数与平滑模式对频响曲线细节处的表现,差别非常大。(在测试频率范围内仪器对不同频点响应值的数量选取,点数越多,测试越精确。仪器对频率范围内频点响应幅值的采样平滑方式,例如1/6oct、1/12oct、1/24oct、1/48oct等,分母越大,数据越精确)。所以,如果想了解到频响曲线上这些细节的变化就要付出的代价是:一个良好的标准测试环境。
应注意的是,在使用多点数,不采用平滑功能的曲线对比时,除环境因数外,还会遇到一些问题。例如上面谐波中提到:因为物体的来回振动,几乎不可能一直按照确定的周期来振动。这时就会出现在某些频点声压级漂移的现象。此时可以根据仪器的功能,将原测试的频率范围分段、采取更多的点数扫描,多方位了解其频段的响应趋势。
3.排除测试误差因数,对频响曲线非常接近的扬声器进行谐波成份的对比,找出下一步改善的方向。一般测试谐波失真的仪器,均能方便的进行谐波成份对比。
(因为在实际应用中,关于影响听感的因数有很多,比如:听音者的心理、生理因数,房间的混响系数,扬声器的指向性等等都会造成听感上的不同。本文仅对在参考轴的测试与听音做一些简单说明。)
结语:在扬声器频响曲线相同时,其音色是由其谐波成份决定。
在扬声器频响曲线相同时,如果音色不同,则需要对扬声器的谐波曲线进行对比。
测试过程中,需充分关注操作人员、测试仪器、使用方法、以及测试环境和治工具对测试结果的影响,尽可能使用多取点、少平滑的方式进行对比。
全部0条评论
快来发表一下你的评论吧 !