电子说
现在的AI是神经网络的天下,但科学家们正在尝试将神经网络与“老式AI”结合。
这里说的“老式AI”是上世纪70年代流行的“符号主义”。在几十年前遭遇失败后,“连接主义”取代其成为主流。
但是,越来越多的科学家注意到,将二者结合才会让AI发挥出更强大的威力。
让连接主义给符号主义“打工”
几年前,科学家从小鸭子身上学到了一样不寻常的东西。如果小鸭子出生后先看到的是两个相似的物体,那么之后会对相似物体产生更多的偏好。
小鸭毫不费力地做的事情对于人工智能来说是很难的,尤其是深度神经网络这一AI分支。
如果交给符号AI,它会怎么做?符号AI会处理物体的名称作为知识库,并给“相似”做出定义作为命题。
凭借其知识库和命题,符号AI采用推理引擎的逻辑规则来回答问题。
但符号AI缺点在于,要实现更复杂的推理需要庞大的知识库(人工构建),如果AI遇到知识库中没有的形状将无法处理。
连接主义利用知识进行训练,让神经网络具有学习能力,但容易受到对抗攻击。
于是将符号主义和连接主义结合起来的混合式神经-符号AI(neurosymbolic AI)应运而生。
科学家用深度神经网络来构建符号AI所需的知识库和命题,省去了人工预设的难题,然后使用符号AI对任务进行推理。
解决李飞飞2016年难题
2016年,李飞飞等人提出了组合语言和基本视觉推理(CLEVR)数据集,要求AI回答由计算机生成的简单3D形状图像相关问题。
使用复杂的深度神经网络可以解决此问题。但是,IBM、MIT和DeepMind的研究人员提出了一种截然不同的解决方案,显示出符号AI的强大能力。该方法相关论文已经被ICLR 2019收录。
在这篇论文中,他们将问题分解为符号AI熟悉的较小部分。
这套系统首先查看图像并表征3D形状及其属性,由此生成知识库。然后,它将问题变成一个可以在知识库上运行并产生答案的符号程序。
过去,在符号AI中,需要让人类程序员去手动输入知识库,现在研究人员希望由神经网络代替人类这项工作。
他们先通过使用卷积神经网络(CNN)解决了第一个问题,识别目标的颜色、形状、材质等属性。
然后使用递归神经网络(RNN)发现顺序输入中的模式。这个模块负责接收自然语言问题并将其转换为符号程序形式的问题。
整个过程类似于按需生成知识库,并让推理引擎在知识库上回答问题。
最终,这种混合AI在从未见过的问题和图像上进行测试,准确率达98.9%,击败了人类。人类只能回答正确92.6%的问题。
更好的是,混合AI只需要纯粹深度神经网络训练数据的10%。混合AI还具有可解释性,如果发生错误,则更容易发现问题所在。
挑战更高难度
搞定CLEVR数据集后,现在神经-符号AI正在解决更为棘手的问题。
2019年,在李飞飞CLEVR数据集的基础上,DeepMind、MIT、哈佛大学和IBM设计了一个更加复杂的挑战CLEVRER:让AI基于视频而不是图像来回答问题。
视频中会出现CLEVR数据集中的目标类型,但是这些目标会移动甚至发生碰撞,而且问题更加棘手。
有些问题是描述性的,比如:视频结束时有多少金属物体在移动?
有些问题则需要预测,比如:接下来将发生哪个事件?[a]绿色圆柱体和球体碰撞,[b]绿色圆柱体与正方体碰撞。
甚至还有些问题是视频中没有发生的(反事实),比如:没有青色圆柱体,将不会发生什么?[a]球体和立方体碰撞, [b]球体和青色圆柱体碰撞, [c]立方体和青色圆柱体碰撞。
对于当今的深度神经网络来说,这种随时间变化的因果关系是非常困难的,这主要表现在发现数据的静态模式方面。
为了解决这个问题,团队扩充了之前解决CLEVR的方案。
首先,神经网络学习将视频片段分解为目标的逐帧表示,然后被馈送到另一个神经网络,学习分析这些目标的运动以及它们如何相互影响,并可以预测目标的运动和碰撞。
这两个模块共同构成了知识库。其他两个模块处理问题并将其应用于生成的知识库。
该团队的解决方案在回答描述性问题方面的准确性约为88%,对于预测性问题的准确性约为83%,对于反事实问题的准确性约为74%。
让AI学会提问
提出好问题是机器在人类的另一项技能。这是一种不断学习世界的方式,而不必等待大量的样本。没有任何一种机器可以接近人类提问的能力。
而神经-符号AI展现出了这方面的能力。
纽约大学Brenden Lake助理教授和他的学生Wang Ziyun构建了一种混合AI,来玩一种需要主动提问的游戏——海战棋(Battleship)。
海战棋是一种猜谜式的攻防游戏,一方在棋盘上隐藏自己的“战舰”(长度不等),另一方负责攻击。
攻击方可以翻看某个方块下是否有“战舰”的一部分,或者直接向对方提问:“船有多长”、“所有三艘船的尺寸都一样吗”,诸如此类的问题 。以此来猜测船只的位置。
Lake和Wang分别用两种不同方式来训练游戏AI。
一种是监督学习,向神经网络展示棋盘和人类提出的好问题。最终神经网络学会了提问,但是很少有创造力。
另一种是强化学习。在这种训练中,每当神经网络提出一个有助于找到战舰的问题时,就会得到奖励。
神经网络最终学会了提出正确的问题,既有用又富有创造力。
Lake以前曾使用纯粹的符号方法解决了该问题,对于给定的棋盘状态,符号AI必须在巨大空间中搜索一个好问题,这让它变得极其缓慢。
但是,神经-符号AI的速度非常快。经过训练后,深度神经网络在产生问题方面远远胜过纯粹的符号AI。
下一步:自动驾驶
MIT-IBM Watson AI实验室的David Cox团队希望将这种混合AI用于自动驾驶技术。
自动驾驶AI需要神经网络经过训练来识别其环境中的物体,并采取适当的措施。如果神经网络在训练中做错了什么,例如撞到行人,就会受到惩罚。
另一位小组成员Nathan Fulton解释这种机制:“为了学会不做坏事,它必须做坏事,体验过那些坏事,然后在做坏事之前找出30个步骤,防止自己陷入困境。”
因此,AI学习安全驾驶需要大量的训练数据,而这些“坏事”让AI很难在现实世界中训练出来。
Fulton和他的同事正在研究一种神经-符号AI方法,克服这种局限性。AI的符号部分对现实世界的某些危险行为做出限制,来约束深度网络的行为。
从一开始就排除某些选择,这种简单的符号干预大大减少了训练AI所需的数据量。
“如果智能体不需要遇到一堆坏状态,那么它就只需要更少的数据,”Fulton说。
尽管该项目仍未准备好在实验室外使用,但Cox设想了一个未来,具有神经-符号AI的汽车将可以在现实世界中学习,而符号组件将成为防止不良驾驶的保障。
原文地址:
https://knowablemagazine.org/article/technology/2020/what-is-neurosymbolic-ai
论文地址:
https://arxiv.org/abs/1910.01442
全部0条评论
快来发表一下你的评论吧 !