光敏元器件
光敏三极管基础知识
光敏三极管和普通三极管相似,也有电流放大作用,只是它的集电极电流不只是受基极电路和电流控制,同时也受光辐射的控制。 通常基极不引出,但一些光敏三极管的基极有引出,用于温度补偿和附加控制等作用。
当具有光敏特性的PN 结受到光辐射时,形成光电流,由此产生的光生电流由基极进入发射极,从而在集电极回路中得到一个放大了相当于β倍的信号电流。不同材料制成的光敏三极管具有不同的光谱特性,与光敏二极管相比,具有很大的光电流放大作用,即很高的灵敏度。
通过对半导体二极管和三极管的学习,我了解了晶体管的基本结构和工作原理,晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图从三个区引出相应的电极,分别为基极b发射极e和集电极c。
发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。虽然重点学习了晶体管的放大作用,但是我对晶体管的开关作用更感兴趣。半导体就像一个开关,可以通过导通与截止来控制电路。
半导体通过添加一部分微量元素会使其特性发生翻天覆地的变化。光敏晶体管就是一种重要的衍生物。视觉是人体最重要的感觉,因此,我觉得通过光来控制电路真是太精妙了,而光敏的二极管三极管恰好就完成这个任务。因为光敏三极管由于还具有放大作用,因此应用比二极管更加广泛。 光敏三极管用于测量光亮度,经常与发光二极管配合使用作为信号接收装置。下面用事例说明介绍一下各种功能。
一 测量光亮度
在教室图书馆,很多时候日光灯白天也亮着,在宿舍里面,日光灯经常是昼夜不息,同学们对这种浪费已经麻木不仁了。有的同学早晨去教室,虽然教室很明亮但还要开灯,虽然一盏日光灯不会浪费多少资源,但积少成多,浪费就是很大了。因此,我们可以在教室安装一个控制电路,当亮度达到一定程度的时候,使得教室里面和宿舍里面日光灯将无法启动。我们可以利用光敏三极管附加电磁继电器来完成这个电路。采光点的选取是一个关键,因为并不是每一个教室的明亮程度都是相同的,我们可以采用多点取样来达到这个要求。例如在20个教室中都安放光敏三极管,我们可以设置,如果他们全部或者大部分亮度都很高,那么,日光灯就无法正常启动 ,达到节约能源的目的。
还有一种情况,就是如果有一天天空布满了乌云,亮度不够,那么日光灯可以开启了。但是不久云开雾散,天气放晴,日光灯不会自动关闭。同样造成很大浪费。可以在采光点所在的教室外面再安装一个采光点,当室内外强度的差值缩小到一定范围是,我们可以认为日光灯的作用可以忽略了,日光灯就会自动关闭。
另外一种情况,如果教室外面正下雨,教室里面日光灯亮着,此时窗外一个闪电,使得外面很亮,日光灯就关闭了,这会造成麻烦。因此要避免这种问题。方法就是在电路中安装计数器,使得亮度差维持一定时间才可以使日光灯强制关闭。
综上所述,我们可以利用光敏三极管设计一个电路,使得日光灯无法正常启动或者被强制关闭从而达到节约能源的目的。当然,这种方法的可行性从现在看并不是很高,电路要改装费用可能很高都会影响实施。不过我认为的确可以通过光敏三极管的特性来得到节约的目的。
二 光电隔离
光敏三极管的另一个作用是传输信号,光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。
光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离 、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦合器工作原理
用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。
三 非接触测量转速
转矩传感器在旋转轴上安装着60条齿缝的测速轮,在传感器外壳上安装的一只由发光二极管及光敏三极管组成的槽型光电开关架,测速轮的每一个齿将发光二极管的光线遮挡住时,光敏三极管就输出一个高电平,当光线通过齿缝射到光敏管的窗口时,光敏管就输出一个低电平,旋转轴每转一圈就可得到60个脉冲,因此,每秒钟检测到的脉冲数恰好等于每分钟的转速值。
全部0条评论
快来发表一下你的评论吧 !