毫无疑问,自动驾驶正在重塑汽车在我们生活中的角色。其现阶段的发展,除了法律和定责层面众多悬而未决的问题之外,技术上的挑战依旧严峻。
对于汽车行业而言,自动驾驶的未来已成定势,而唯一的变数只是何时能得到大规模的部署。当前而言,市场更应该关心的是其“应用场景”和“如何实现”的问题。
数年来,汽车制造商、一级供应商以及半导体厂商都在自动驾驶汽车技术上取得了长足的进步。
然而,所有量产车型到现在连 Level 3(有限条件下的自动驾驶)都还没达到。
首款搭载高度自动驾驶系统的量产车型预计将于 2021 年在德国上路,但其只限于特定类型的道路上,例如高速公路(Autobahn),同时还需要满足合适的气候条件。为了提高自动驾驶车辆在非理想环境的适应能力,传感器组、计算单元和软件算法需要不断的优化。
汽车工业杂志近期(Automotive Industries ,下文简称“AI”)专访了 Cadence 公司汽车解决方案总监 Robert Schweiger ,以下是采访内容:
Robert Schweiger
Cadence 公司汽车解决方案总监
AI:为什么达到 Level 3 自动驾驶如此困难?
Robert Schweiger:过去几年,我们目睹了各个企业和国家间的技术竞争,很显然每家厂商都希望自己的自动驾驶量产车型可以率先通过本国政府的批准。
尽管目前仍然还有尚未攻克的挑战,但技术的创新和进步显然已经领先于政府法规的制定,相关机构目前并没有发布任何法律框架规定,以允许汽车制造商在特定条件下在公路上使用这项新技术。基于这一原因,奥迪的 Traffic Jam Pilot 自动驾驶系统并没有搭载到其 A8 系列的量产车型。
此外,自动驾驶汽车还面临着很多诸如定责和保险等其它方面的监管障碍。
现在,自动驾驶汽车领域的竞争已经深入到了各国政府的立法监管层面。
AI:提到自动驾驶领域的新技术,能否分享一下硬件平台的关键趋势?
Schweiger:自动驾驶系统有可能会率先用于自动驾驶出租车(Robotaxi)和豪华车型,因为高价车的 OEM 厂商会更容易负担自动驾驶系统带来的成本增加。展望未来,最有潜力的应用领域应该是中型车与经济性电动车。这一细分市场对硬件平台的关键需求包括每瓦性能、可扩展性、驾驶安全、信息安全以及成本。
同时采用 10 个不同的电子控制单元(ECUs)意味着很难满足每瓦性能和成本的苛刻要求,所以唯一的应对方法是采用基于高性能片上系统(SoC)且高度集成的解决方案。
2019 年,特斯拉发布了首款完全自动驾驶(FSD)计算机(HW3.0),以及配套的自研软件和机器学习环境。更值得称道的是,作为首家自行开发 SoC 的 OEM 厂商,特斯拉的 SoC 芯片可以完全匹配自身的系统需求。
特斯拉发布的这款 SoC 由两个 AI 处理器核心组成,最高性能达到了 144 TOPS/72 瓦(2 TOPS/W),至今仍然是行业标杆。
而市面上多数其它的自动驾驶平台甚至连 1 TOPS/W 都没达到!下一代 SoC 的目标应该是数百 TOPS 和更好的 TOPS/W 比值,而做到这一点只能依赖于市面上最领先的制程技术。
如果一家汽车制造商真心想进入自动驾驶汽车的商业市场,它们就应该认真考虑开发基于自身需求应用的 SoC,建成性能和成本最优化的自动驾驶平台。
AI:智能汽车产生的海量数据是否会对存储器有新的需求?
Schweiger:即便脱手操作的自动驾驶系统(Level 3)预期将于 2021 年在特定道路环境下应用,我觉得自动驾驶的真正价值在于其是否也可以支持在施工路段或恶劣天气条件下正常运行。为此,我们需要更高精度的传感器模组以提高系统的稳健性。
这也是为什么类似系统会产生海量的数据。当我们的自动驾驶从 Level 2 演进到 Level 5 全自动驾驶,预计每秒钟会生成 3 GB 到 10 GB 的新增数据。哪怕只是一台 Level 2 自动驾驶汽车,其产生的数据量也已经高达每秒 1 GB。
关于新一代 ADAS 计算单元对存储器的需求,我们观察到最新存储器标准发展的趋势。作为 IP 供应商,Cadence 已经全面支持了这些标准。汽车行业的这一变化趋势可以从三个方面来理解:
高性能数据处理:处理器和 RAM 间更高的数据速率需要从 LPDDR 4 迁移到 LPDDR 5,由此数据速率将翻倍到最高 6.4 Gbit/s
高速数据收集和传输:闪存接口应该从 eMMC/UFS 2.0/2.1 升级到 UFS 3.0,数据速率可以达到最高 23.2 Gbit/s(2 条通道)
超大规模数据存储:从 64 GB 到 1 TB 的 NAND 闪存(TLC 和 QLC)
AI:海量数据的传输会显著影响车载网络系统,这一领域取得了哪些进展?
Schweiger:这个话题也很重要,关于传感器原始数据融合,目前争论的两个方向是需要采用分布式处理还是中心化处理架构。为了将摄像头或雷达等高精度传感器连接到计算单元,我们需要汽车以太网络或 MIPI CSI-2 等高速协议。
每个现行的网络标准都各有局限。OEM 已经投产了 1 Gbps 的汽车以太网 PHY,支持 15 米线缆的数据传输。然而,带宽不足依然是最大的障碍,甚至连 60 帧每秒(FPS)的全高清视频都无法支持。
MIPI CSI-2 结合 D-PHY v2.1 接口可以支持短通道上(15 厘米以内可保证最高数据速率)每条线最高 6 Gbps。但由于 PHY 的工作范围有限,长距通道模型(1-4 米)的最高数据速率不到 4.5 Gbps。系统间的长距高速互联需要使用低电压差分信号(LVDS)桥接。
MIPI 联盟最新发布了 MIPI A-PHY 规范,旨在支持 15 米以内线缆上达到 16 Gbps 的数据传输速率,主要用于连接高精度传感器(端点)和中央处理单元。
展望未来,OPEN 联盟 SIG 与 IEEE 已经启动数千兆位级以太网标准的开发以支持最高 10 Gbps 的数据速率,是以太网主干与 ECU 间通信的完美选择。当然,25G PHYs 也已经提上日程,但具体实现还需要更长时间。
无须多言,这两种 PHY 的面世应用将对汽车网络架构产生巨大影响。我相信,主要针对单向数据传输优化的 MIPI 标准将被用于传感器和显示等端点;而车载以太网则是不同域之间的高速通信的理想选择。
AI:Cadence 如何帮助客户开发高度复杂的系统?
Schweiger:Cadence 在汽车智能系统设计领域拥有深厚基础,是值得信赖的合作伙伴。Cadence 可以提供汽车智能设计所需的全部 EDA 工具、设计流程、经硅验证的接口和处理器 IP、高性能云基础设施和领先的设计服务,帮助客户创建复杂的汽车 SoC 芯片和智能传感器,以及高性能传感器融合单元。
定制 SoC 设计对传统 OEM 厂商和一级供应商还是全新的领域,Cadence 的设计服务团队可以帮助客户实现复杂的 SoC 设计,强化团队所需的技能。在我们的协助下,客户可以逐步掌握采用先进的芯片设计流程,并最终独立执行完整的设计。
最后,在面向系统分析和设计层面上,Cadence 也提供整套的计算软件用于芯片、封装、RF 模块、母板,以及网络与系统。而我们最新的电磁接口/电磁兼容性(EMI/EMC)和全 3D 热分析等系统分析工具可以对完整系统进行仿真。
例如,客户可以应用集成了 FEA-CFD 的 Cadence Celsius Thermal Solver 热求解器,来分析驾驶平台的热流动,并同时考虑电子元件和机械底盘的影响因素。此外,客户还可以借助 Cadence Clarity 工具套件对 ECU 的 EMI/EMC 进行多种方式仿真:既可以单独仿真,也可以在完整的汽车平台上使用 Cadence Clarity 3D Solver 进行近场仿真,或使用 Cadence Clarity 3D Transient Solver 进行远场仿真。
关于 Cadence
Cadence 在计算软件领域拥有超过 30 年的专业经验,是电子设计产业的关键领导者。基于公司的智能系统设计战略,Cadence 致力于提供软件、硬件和 IP 产品,助力电子设计概念成为现实。Cadence 的客户遍布全球,皆为最具创新能力的企业,他们向消费电子、超大规模计算、5G 通讯、汽车、移动、航空、工业和医疗等最具活力的应用市场交付从芯片、电路板到系统的卓越电子产品。Cadence 已连续六年名列美国财富杂志评选的 100 家最适合工作的公司。如需了解更多信息,请访问公司网站 cadence.com。
2021 Cadence Design Systems, Inc. 版权所有。在全球范围保留所有权利。Cadence、Cadence 徽标和 www.cadence.com/go/trademarks 中列出的其他 Cadence 标志均为 Cadence Design Systems, Inc. 的商标或注册商标。所有其他标识均为其各自所有者的资产。
原文标题:自动驾驶——仍在继续改进的路上
文章出处:【微信公众号:Cadence楷登】欢迎添加关注!文章转载请注明出处。
责任编辑:haq
全部0条评论
快来发表一下你的评论吧 !