关于GCN的入门学习知识详解

描述

什么是GCN

由于高度的复杂性和信息的结构特征,图上的机器学习是一项困难的任务。「GCN是被设计用来针对图结构的神经网络,它能从之前的网络层中聚合信息。在图中,这种机制能够对节点产生有用的特征表示。」

GCN是基于图机器学习的非常强大的神经网络体系结构。

实际上,它们是如此强大,以至于随机发起的2层GCN都可以产生网络中节点的有用特征表示。

下图说明了由此类GCN生成的网络中每个节点的二维表示。请注意,即使没有任何训练,网络中节点的相对接近度仍保留在二维表示中。

机器学习

更正式地说,图卷积网络(GCN)是在图上运行的神经网络。给定图G =(V,E),V表示节点,E表示边,则GCN作为输入

输入特征矩阵X(N×F⁰),其中N是节点数,F⁰是每个节点的输入特征数,以及图结构的N×N矩阵表示形式,例如G的邻接矩阵A

因此,GCN中的隐藏层可以写成Hⁱ= f(Hⁱ⁻¹,A))。

其中H⁰= X,f是传播(propagation)方式。每一层Hⁱ对应于一个N×Fi特征矩阵,其中每一行是一个节点的特征表示。在每一层,使用传播规则f聚合这些特征,以形成下一层的特征。这样,特征在连续层上变得越来越抽象。在此框架中,GCN的变体仅在传播规则f的选择上有所不同。

一个简单的传播规则

传播规则中最简单的一种是:

f(Hⁱ,A)=σ(AHⁱWⁱ)

其中Wⁱ是第i层的权重矩阵,而σ是非线性激活函数,例如ReLU函数。权重矩阵的尺寸为Fⁱ×Fⁱ⁺¹;换句话说,权重矩阵的第二维的大小确定了下一层的特征数量。如果你熟悉卷积神经网络,则此操作类似于过滤操作(filtering operation),因为这些权重在图中的节点之间共享。

简化

让我们从最简单的角度检查传播规则:

i = 1,满足 f是输入特征矩阵的函数

σ是恒等函数

选择权重 AH⁰W⁰=AXW⁰= AX

换句话说,f(X,A)= AX。这个传播规则可能有点太简单了,稍后我们会添加缺失的部分。AX现在等效于多层感知器的输入层。

一个简单的图形示例

举一个简单的例子,我们使用以下图形:

机器学习

下面是其numpy邻接矩阵表示形式。

A = np.matrix([

[0, 1, 0, 0],

[0, 0, 1, 1],

[0, 1, 0, 0],

[1, 0, 1, 0]],

dtype=float

接下来,根据其索引为每个节点生成2个整数特征,便于以后手动确认矩阵计算。

In [3]: X = np.matrix([

[i, -i]

for i in range(A.shape[0])

], dtype=float)

X

Out[3]: matrix([

[ 0., 0.],

[ 1., -1.],

[ 2., -2.],

[ 3., -3.]

])

应用传播规则

好吧!现在,我们有了一个图形,其邻接矩阵A和一组输入要素X。让我们看看应用传播规则时会发生什么:

In [6]: A * X

Out[6]: matrix([

[ 1., -1.],

[ 5., -5.],

[ 1., -1.],

[ 2., -2.]]

发生了什么?现在,每个节点(每行)的表示形式都是其邻居特征的总和!换句话说,图卷积层将每个节点表示为其邻居的集合。注意,在这种情况下,如果存在从v到n的边,则节点n是节点v的邻居。

问题

你可能已经发现了问题:

节点的汇总表示不包括其自身的功能!

该表示是邻居节点特征的集合,因此只有具有自环的节点才会在集合中包括自己的特征。度数较大的节点的特征将具有较大的值,而度数较小的节点将具有较小的值。这可能会导致梯度消失或爆炸,但对于随机梯度下降算法(通常用于训练此类网络并且对每个输入特征的比例(或值的范围)敏感)也存在问题。在下文中,我将分别讨论每个问题。

添加自环

为了解决第一个问题,可以简单地向每个节点添加一个自环。实际上,这是通过在应用传播规则之前将单位矩阵I与邻接矩阵A相加来完成的。

In [4]: I = np.matrix(np.eye(A.shape[0]))

IOut[4]: matrix([

[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.]

])

In [8]: A_hat = A + I

A_hat * X

Out[8]: matrix([

[ 1., -1.],

[ 6., -6.],

[ 3., -3.],

[ 5., -5.]])

由于该节点现在是其自身的邻居,因此在总结其邻居的特征时会包括该节点自己的特征!

规范特征表示

通过将邻接矩阵A与D的逆矩阵相乘来变换邻接矩阵A,可以按节点度对特征表示进行归一化。因此,我们简化的传播规则如下所示:

f(X,A)=D⁻¹AX

让我们看看发生了什么。我们首先计算度矩阵。

In [9]: D = np.array(np.sum(A, axis=0))[0]

D = np.matrix(np.diag(D))

D

Out[9]: matrix([

[1., 0., 0., 0.],

[0., 2., 0., 0.],

[0., 0., 2., 0.],

[0., 0., 0., 1.]

])

在应用规则之前,让我们看看对邻接矩阵进行转换后会发生什么。

Berfore

A = np.matrix([

[0, 1, 0, 0],

[0, 0, 1, 1],

[0, 1, 0, 0],

[1, 0, 1, 0]],

dtype=float

After

In [10]: D**-1 * A

Out[10]: matrix([

[0. , 1. , 0. , 0. ],

[0. , 0. , 0.5, 0.5],

[0. , 0.5, 0. , 0. ],

[0.5, 0. , 0.5, 0. ]

])

请注意,邻接矩阵每一行中的权重(值)已除以与该行相对应的节点的度。我们将传播规则与变换后的邻接矩阵一起应用:

In [11]: D**-1 * A * X

Out[11]: matrix([

[ 1. , -1. ],

[ 2.5, -2.5],

[ 0.5, -0.5],

[ 2. , -2. ]

])

得到与相邻节点特征均值相对应的节点表示。这是因为(转换后的)邻接矩阵权重,与相邻节点特征加权和的权重相对应。我鼓励你自己验证此观察。

放在一起

现在,我们结合了自循环和标准化技巧。此外,我们将重新介绍先前为简化讨论而丢弃的权重和激活函数。

加重权重

首要任务是应用权重。请注意,这里D_hat是A_hat = A + I的度矩阵,即具有强制自环的A的度矩阵。

In [45]: W = np.matrix([

[1, -1],

[-1, 1]

])

D_hat**-1 * A_hat * X * W

Out[45]: matrix([

[ 1., -1.],

[ 4., -4.],

[ 2., -2.],

[ 5., -5.]

])

如果我们想减小输出特征表示的维数,可以减小权重矩阵W的大小:

In [46]: W = np.matrix([

[1],

[-1]

])

D_hat**-1 * A_hat * X * W

Out[46]: matrix([[1.],

[4.],

[2.],

添加激活功能

我们选择保留特征表示的维数并应用ReLU激活功能。

In [51]: W = np.matrix([

[1, -1],

[-1, 1]

])

relu(D_hat**-1 * A_hat * X * W)

Out[51]: matrix([[1., 0.],

[4., 0.],

[2., 0.],

[5., 0.]])

瞧!具有邻接矩阵,输入函数,权重和激活功能的完整隐藏层!

简单样例

最后,我们可以在真实图上应用图卷积网络。我将向你展示如何产生我们在文章开头看到的要素表示。

扎卡里的空手道俱乐部

扎卡里(Zachary)的空手道俱乐部是一种常用的社交网络,其中节点代表空手道俱乐部的成员,其边缘相互联系。当扎卡里(Zachary)研究空手道俱乐部时,管理者与教练之间发生了冲突,导致俱乐部分裂为两部分。下图显示了网络的图形表示,并且根据俱乐部的哪个部分标记了节点。管理员和讲师分别标有“ A”和“ I”。

机器学习

建立GCN

现在来建立图卷积网络。实际上我们不会训练网络,只是简单地随机初始化,以产生在本文开头看到的功能表示。我们将使用图网络networkx表示整个图,并计算A_hat和D_hat矩阵。

from networkx import karate_club_graph, to_numpy_matrixzkc = karate_club_graph()

order = sorted(list(zkc.nodes()))A = to_numpy_matrix(zkc, nodelist=order)

I = np.eye(zkc.number_of_nodes())A_hat = A + I

D_hat = np.array(np.sum(A_hat, axis=0))[0]

D_hat = np.matrix(np.diag(D_hat))

接下来,我们随机初始化权重。

W_1 = np.random.normal(

loc=0, scale=1, size=(zkc.number_of_nodes(), 4))

W_2 = np.random.normal(

loc=0, size=(W_1.shape[1], 2))

堆叠GCN层:在这里,我们仅使用单位矩阵作为特征表示,即,每个节点都表示为单次热编码的分类变量。

def gcn_layer(A_hat, D_hat, X, W):

return relu(D_hat**-1 * A_hat * X * W)H_1 = gcn_layer(A_hat, D_hat, I, W_1)

H_2 = gcn_layer(A_hat, D_hat, H_1, W_2)

output = H_2

提取特征表示:

feature_representations = {

node: np.array(output)[node]

for node in zkc.nodes()}

瞧!特征表示很好地将Zachary空手道俱乐部中的社区分隔开来。而且我们还没有开始训练!

机器学习

对于此示例,由于ReLU函数的作用,随机初始化的权重很有可能在x轴或y轴上给出0值,因此需要进行几次随机初始化才能产生上图。

结论在这篇文章中,我对图卷积网络进行了高级介绍,并说明了GCN中每一层节点的特征表示是如何基于其邻域聚合而得出的。我们了解了如何使用numpy构建这些网络以及它们的强大功能:即使是随机初始化的GCN,也可以在Zachary的空手道俱乐部中分离社区。

编辑:lyn

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分