薄膜瑕疵在线检测系统的发展形势是怎样的

今日头条

1152人已加入

描述

导读:众所周知,如今随着科技不断的发展与进步,现如今各行业都开始引进自动化设备来提高自身的生产效率。随着工业4.0的到来,机器视觉技术在工业自动化中逐渐起着十分重要的地位,机器视觉技术的不断创新,推动了工业自动化行业的进步。

机器视觉技术从的应用范围:

1.图像识别应用

图像识别,是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。图像识别在机器视觉工业领域中最典型的应用就是二维码的识别了,二维码就是我们平时常见的条形码中最为普遍的一种。将大量的数据信息存储在这小小的二维码中,通过条码对产品进行跟踪管理,通过机器视觉系统,可以方便对各种材质表面的条码进行识别读取,大大提高了现代化生产的效率。

2.图像检测应用

检测是机器视觉工业领域最主要的应用之一,几乎所有产品都需要检测,而人工检测存在着较多的弊端,人工检测准确性低,长时间工作的话,准确性更是无法保证,而且检测速度慢,容易影响整个生产过程的效率。因此,机器视觉在图像检测的应用方面也非常的广泛,例如:硬币边缘字符的检测。2000年10月新发行的第五套人民币中,壹圆硬币的侧边增强了防伪功能,鉴于生产过程的严格控制要求,在造币的最后一道工序上安装了视觉检测系统;印刷过程中的套色定位以及较色检查、包装过程中的饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等;玻璃瓶的缺陷检测。机器视觉系统对玻璃瓶的缺陷检测,也包括了药用玻璃瓶范畴,也就是说机器视觉也涉及到了医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。

3.视觉定位应用

视觉定位要求机器视觉系统能够快速准确地找到被测零件并确认其位置。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。

4.物体测量应用

机器视觉工业应用最大的特点就是其非接触测量技术,同样具有高精度和高速度的性能,但非接触无磨损,消除了接触测量可能造成的二次损伤隐患。常见的测量应用包括齿轮、接插件、汽车零部件、IC元件管脚、麻花钻、罗定螺纹检测等。

5.物体分拣应用

实际上,物体分拣应用是建立在识别、检测之后一个环节,通过机器视觉系统将图像进行处理,实现分拣。在机器视觉工业应用中常用于食品分拣、零件表面瑕疵自动分拣、棉花纤维分拣等。

fqj

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分