数据处理中pandas的groupby小技巧

描述

pandas的groupby是数据处理中一个非常强大的功能。虽然很多同学已已经非常熟悉了,但有些小技巧还是要和大家普及一下的。为了给大家演示,我们采用一个公开的数据集进行说明。

import pandas as pd

iris = pd.read_csv

随机采样5条,数据是长这样子的。

》》》 iris.sample(5)

sepal_length sepal_width petal_length petal_width species

95 5.7 3.0 4.2 1.2 versicolor

71 6.1 2.8 4.0 1.3 versicolor

133 6.3 2.8 5.1 1.5 virginica

4 5.0 3.6 1.4 0.2 setosa

33 5.5 4.2 1.4 0.2 setosa

因为是分组功能,所以被分的对象肯定是类别型的。在这个数据里,这里我们就以species进行分组举例。

首先,以species分组创建一个groupby的object。这里单独生成groupby对象是因为后面会反复用到,其实用的熟练了直接链接起来就可以了。

iris_gb = iris.groupby(‘species’)

一、创建频率表假如我想知道每个species类中的数量有多少,那么直接使用groupby的size函数即可,如下。

》》》 iris_gb.size()

species

setosa 50

versicolor 50

virginica 50

dtype: int64

二、计算常用的描述统计量比如,我想要按组计算均值,那么就用mean()函数。

》》》 # 计算均值

》》》 iris_gb.mean()

sepal_length sepal_width petal_length petal_width

species

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

默认情况下如果没有限制,那么mean()函数将对所有变量特征计算均值。如果我希望只计算某一个变量的均值,可以指定该变量,如下所示。

》》》 # 单列

》》》 iris_gb[‘sepal_length’].mean()

species

setosa 5.006

versicolor 5.936

virginica 6.588

Name: sepal_length, dtype: float64

》》》 # 双列

》》》 iris_gb[[‘sepal_length’, ‘petal_length’]].mean()

sepal_length petal_length

species

setosa 5.006 1.462

versicolor 5.936 4.260

virginica 6.588 5.552

同理,其它描述性统计量min、max()、medianhe和std都是一样的用法。

三、查找最大值(最小值)索引如果我们要查找每个组的最大值或最小值的索引时,有一个方便的功能可以直接使用。

》》》 iris_gb.idxmax()

sepal_length sepal_width petal_length petal_width

species

setosa 14 15 24 43

versicolor 50 85 83 70

virginica 131 117 118 100

如何应用呢?

比如我们想查找每组sepal_length最大值对应的整条记录时,就可以这样用。注意,这里是整条记录,相当于按sepal_length最大值这个条件进行了筛选。

》》》 sepal_largest = iris.loc[iris_gb[‘sepal_length’].idxmax()]

》》》 sepal_largest

sepal_length sepal_width petal_length petal_width species

14 5.8 4.0 1.2 0.2 setosa

50 7.0 3.2 4.7 1.4 versicolor

131 7.9 3.8 6.4 2.0 virginica

四、Groupby之后重置索引很多时候,我们在groupby处理后还要进行其他操作。也就是说,我们想重置分组索引以使其成为正常的行和列。

第一种方法可能大家常用,就是通过reset_index()让乱序索引重置。

》》》 iris_gb.max().reset_index()

species sepal_length sepal_width petal_length petal_width

0 setosa 5.8 4.4 1.9 0.6

1 versicolor 7.0 3.4 5.1 1.8

2 virginica 7.9 3.8 6.9 2.5

但其实,还有一个看上去更加友好的用法。可以在groupby的时候就设置as_index参数,也可以达到同样效果。

》》》 iris.groupby(‘species’, as_index=False).max()

species sepal_length sepal_width petal_length petal_width

0 setosa 5.8 4.4 1.9 0.6

1 versicolor 7.0 3.4 5.1 1.8

2 virginica 7.9 3.8 6.9 2.5

五、多种统计量汇总上面都是单个统计量的操作,那如果我想同时操作好几个呢?

groupby还有一个超级棒的用法就是和聚合函数agg连起来使用。

》》》 iris_gb[[‘sepal_length’, ‘petal_length’]].agg([“min”, “mean”])

sepal_length petal_length

min mean min mean

species

setosa 4.3 5.006 1.0 1.462

versicolor 4.9 5.936 3.0 4.260

virginica 4.9 6.588 4.5 5.552

在agg里面,我们只要列出统计量的名称即可,便可同时对每个列进行多维度统计。

六、特定列的聚合我们也看到了,上面是的多个操作对于每个列都是一样的。实际使用过程中,我们可能对于每个列的需求都是不一样的。

所以在这种情况下,我们可以通过为不同的列单独设置不同的统计量。

》》》 iris_gb.agg({“sepal_length”: [“min”, “max”], “petal_length”: [“mean”, “std”]})

sepal_length petal_length

min max mean std

species

setosa 4.3 5.8 1.462 0.173664

versicolor 4.9 7.0 4.260 0.469911

virginica 4.9 7.9 5.552 0.551895

7、NamedAgg命名统计量现在我又有新的想法了。上面的多级索引看起来有点不太友好,我想把每个列下面的统计量和列名分别合并起来。可以使用NamedAgg来完成列的命名。

》》》 iris_gb.agg(

。。. sepal_min=pd.NamedAgg(column=“sepal_length”, aggfunc=“min”),

。。. sepal_max=pd.NamedAgg(column=“sepal_length”, aggfunc=“max”),

。。. petal_mean=pd.NamedAgg(column=“petal_length”, aggfunc=“mean”),

。。. petal_std=pd.NamedAgg(column=“petal_length”, aggfunc=“std”)

。。. )

sepal_min sepal_max petal_mean petal_std

species

setosa 4.3 5.8 1.462 0.173664

versicolor 4.9 7.0 4.260 0.469911

virginica 4.9 7.9 5.552 0.551895

因为NamedAgg是一个元组,所以我们也可以直接赋值元组给新的命名,效果一样,但看上去更简洁。

iris_gb.agg(

sepal_min=(“sepal_length”, “min”),

sepal_max=(“sepal_length”, “max”),

petal_mean=(“petal_length”, “mean”),

petal_std=(“petal_length”, “std”)

八、使用自定义函数上面agg聚合函数中我们都是通过添加一个统计量名称来完成操作的,除此之外我们也可直接给一个功能对象。

》》》 iris_gb.agg(pd.Series.mean)

sepal_length sepal_width petal_length petal_width

species

setosa 5.006 3.428 1.462 0.246

versicolor 5.936 2.770 4.260 1.326

virginica 6.588 2.974 5.552 2.026

不仅如此,名称和功能对象也可一起使用。

iris_gb.agg([“min”, pd.Series.mean])

更骚的是,我们还可以自定义函数,也都是可以的。

》》》 def double_length(x):

。。. return 2*x.mean()

。。.

》》》 iris_gb.agg(double_length)

sepal_length sepal_width petal_length petal_width

species

setosa 10.012 6.856 2.924 0.492

versicolor 11.872 5.540 8.520 2.652

virginica 13.176 5.948 11.104 4.052

当然如果想更简洁,也可以使用lambda函数。总之,用法非常灵活,可以自由组合搭配。

iris_gb.agg(lambda x: x.mean())

以上就是使用groupby过程中可能会用到的8个操作,如果你熟练使用起来会发现这个功能是真的很强大。

原文标题:Pandas 100 个骚操作:groupby 8 个常用技巧!

文章出处:【微信公众号:数据分析与开发】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分