高频信号干扰

布线技巧与EMC

27人已加入

描述

高频信号干扰

问:我听说射频(RF)信号能使低频电路产生奇怪现象。这究竟是怎么 回事?

答:我有一次去法国,因为ADI公司的压频转换器(VFC)AD654发生“精度不合 格”问题。在我的实验室测量这个有问题的器件发现该器件性能稳定并且符合技术指标要求 ,但是当我返回用户那里进行测试则不能重复我的测试结果。正当我想到事件发生的现场去 考察以证实我 的怀疑的时候,我发现该用户所在城市有一家名叫“La Cognette”饭店有三个卫星通信天 线。这个问题我没有轻易放下,对用户进行考察感到更加有必要。在英格兰 认真考察在 Bo eing 风洞测试数据偏差的Herman Gelbach,答应过来帮助我,并认为这是一个很有 趣的技术问题(但是在他决定帮助我之前,我注意到他认真地调查了有关卫星通信天线的情 况)。

从英格兰南部的Newbury城ADI公司的办事处出发驱车到法国的中心,开车用6个小时, 汽车轮渡英吉利海峡用 6个小时,并且从左侧通行改为右侧通行。不管怎样,开车比乘飞机好,因为汽车能带较多 的测试设备(和便携式移动电台以及两个移动电话)。

当我们考察用户的工作环境时,我们来回穿越巨大的短波发射天线。我们开始猜测问题 可能出在这里,然后当我们进入实验室时,我携带一个2米波段手持对讲机放在衣服口袋里 。
当用户报告时,AD654确实性能不稳定,VFC的输出频率在几分钟时间内其等效电压偏移可 达几十毫伏(mV)。我把手冷静地插入口袋里,并且按下我的对讲机的发射按钮,此时输出频 率的等效值电压跳到150 mV,从而验证了高频干扰带来的问题。后来比较正式的测试结果表 明当地(法国海外广播电台)发射机在我们用户工作范围内产生的高频场强每米为几十或几百 毫伏(mV/m)。

由此可见,精密测量电路中的许多不稳定问题都可以归结到高频干扰, 除非音响系统 不接受附近广播电台播放很强的摇滚音乐。用户忽视了这种不稳定的干扰源并且责备放大 器或数据转换器生产厂家,这是很正常的。

此外,用大功率信号去影响AD654是不常见的,因为AD654是一种单端输入并且对RF信号 又相当不灵敏。但对于具有差分放大作用的仪表放大器却是比较常见的,因 为仪表放大器的两个输入端对地输入阻抗很高,因此 容 易受到低功率(来自个人计算机PC辐射)RF干扰(请见ADI公司出版的 Analog Devices System ?Design Seminar Notes 和 System Application Guide,1993)。

在仪表放大器中很重要的一个因素是共模抑制随频率增加而减小(从很低的频率开始减 小),即失真随频率增加。这样不仅仅是不抑制高频共模信号,而且使高频共模信号失真, 产 生失调。对于RF干扰可能性很强的应用场合,AD830差分放大器具有很宽的共模抑制,它是 为线接收器应用而设计的。AD830可能是仪表放大器有用的替换。

传感器通常用长电缆将其连接到信号调节电子设备。无线电工程师对于这种几根长 导线有一个专有名词,称之为“天线”。从传感器到其电子设备之间的这种长馈线将按照同 样的表现行为也会起到一个天线的作用,即使我们不希望它起到天线的作用也是如此。如果 传感器的外壳接地就设有问题了,因为在高频情况下外壳的电抗和馈线使整个系统起到一个 天线的作用,而且天线接受的任何高频信号(电场、磁场或电磁场)都将出现在阻抗上。对于 上述高频信号最可能的终止位置是在放大器的输入端。精密低 频放大器很少与大的高频信号耦合,所以输出结果只表现出常见的可调整失调误差。

问:这种情况对我来说不可能会发生!

答:我可不认为你不会遇到这种情况。如果你认为你的电路不会遇到这种问题, 我愿跟你赌一顿午餐,我总是会很容易地赢得这顿午餐。在2米(144~148MHz)范围内,我使 用一台手持对讲 机,在1米距离内每秒1瓦的功率几乎每次都会赢得这顿午餐,而这个不太引人注目的测试却 同样地令人信服。

断开传感器及其引线。将放大器的输入端对地用尽量短的连线短路,然后测量放大器的 输出端,在几分钟时间范围内观测其输出稳定。现在除去短路,恢复传感器引线,并将其置 于正常工作环境。在传感器的输出端禁止激励和短路。再测量放大器的输出端,发现其输出 随时间变化。缓慢下降。

使用高频示波器(或频谱分析仪更灵敏,但判读性差)常常有可能观察到高频噪声,而且 在放大器的输入端常模和共模两种形式的高频噪声都存在。但是肯定对常模噪声测量产生怀 疑,因为示波器本身(即其电源和探头引线)所产生的干扰信号可能使测量无效。如果在测量 点和示波器输入端之间使用一个简单的宽带变压器可以使示波器的影响减到最小,如图16? 1所示。但这种变压器的阻抗相当低,会增加被测电路的负载。

信号干扰

图16?1 在测量点与示波器输入端之间接一个宽带变 压器
由于禁止对传感器的任何激励,并且将示波器的地接到印制线路板的输入地,又把传感 器的所有引脚一起接到示波器的输入端,所以很容易观测到共模信号。所有这些共模信号幅 度常常达到几百毫伏并且其频率范围从低频到几十或几百兆赫。

现实世界到处都充满高频噪声源:无线电台、警察局手持对讲机的人、车库大门开启工 具、太阳、超新星、开关电源和逻辑信号(例如个人计算机)。因为我们不能消除现实环境中 的高频噪声,所以我们在高频噪声抵达精密放大器之前,必须从低频信号中把它滤掉。当信号带宽仅有几赫时,我们可以使用最简单的防护方法。在放大器前面接一个简单 的RC低通滤波器对常模和共模高频噪声都有防护作用。相应的电路如图16?2所示。在选择 电 路元件时有两个重要问题应该考虑。阻抗R和R′(图中示为1 kΩ,相应的放大器偏置电流为 几个纳安或更低)必须选择适当,以便当放大器的偏置电流流经它们时不使失调电压明显增 加。另外常模时间常数(R+R′)C2一定要比共模时间常数RC1和R′C′1大得多。否则 ,为了避免共模信号转换成两个差分输入之间的信号过程造成的不平衡,要求两个共模时间 常数必须匹配得非常好。

如果信号带宽较宽,那么这种简单的滤波电路就不再适合,因为这时会把有用的高频常 模信号和无用
信号干扰
图16?2 简单的RC低通滤波器
的高频共模信号都滤掉。如果把大的高频共模信号接到放大器,很可能受到共 模向常模转换及次检波(minor rectification)产生的低频误差的影响,所以必须使用既 抑制高频共模信号又通过直流和高频常模信号的滤波器。

这种滤波器如图16?3所示,它是许多年前由Bill Gunning设 计的,它与用于长途电话线路的幻象电路(phantom circuit)有关。它使用紧耦合的“三 组抽头”变压器,有三个绕组,其精确匝数比为1∶1∶1。这种变压器任一绕组上的交流 电压都将耦合到其它 两个绕组上。
信号干扰
图16?3 用一个“三组抽头”变压器滤掉高频噪声
该变压器防护绕组的一端接到信号源的地,另一端接到放大器的防护端(guard pin) 或分压比较端,这个防护绕组的作用相当于把放大器“看作”接成一个电容器的常用作法。 高频共模信号将加到(被规定的)下层绕组,并且包含与其它两个绕组都相等的共模电压,这 样减去与每个绕组相串联的共模电压,从而有效地抵消了放大器输入端的高频共模信号。
当然还有一些潜在的问题。与变压器相串联的电容器几乎是防护电路的主要元件,用来 阻塞直流和低频信号并且防止防护电路中的低频电流致使变压器磁芯饱和。从放大器防护端 看进去的阻抗一定要比变压绕组阻抗低许多,这样在甚高频情况下,变压器的容抗将允许信 号漏泄或者可以产生相移。如果用这种变压器必须处理很宽的共模频率范围,那么这些问题 必将导致对变压器设计的不相容限制。

在这种情况下,可以考虑如下图那样使用两个独立的变压器加倍消除高频噪声——其中 一个靠近具有高感抗(相应的容抗也很高)放大器,另一个具有很高的甚高频(VHF)效率。
还可以采用其它方法:放大器尽量靠近传感器而且用载有数字信号的导线(或光导纤维) 取代传输模拟信号的长电缆,其中数字信号受干扰程度可能差一 点儿,所以对它再进行屏蔽通常(但不总是)有改善。并且有时(但不常见)有可能减少无 用HF信号的概率。即使你远离电台和警察局,那么意想不到的烘馅
信号干扰
图16?4 用两个“三组抽头”变压器滤掉高频噪声

饼运货车辐射出的噪声信号进入底座的可能性总是存在的。 虽然最重要的考虑是意识到高频干扰的可能性,但是还要准备处理这种干扰。如果电路 设计总是预料无用的HF干扰,那么最好的可能性是充分预防——当你还没想到是卫星天线带 来的影响时,已经事先采取预防措施了。

问:那么法国用户的问题是如何解决的?

答:他们的问题用2只电阻器、三片电容器和一块接地铜片便解决了问题。我们离 开La Cognette 饭店,凯旋而归。

问:最后,请你讲一下有关电源去耦问题。

答:所有精密模拟集成电路(IC)甚至低频电路都含有截止频率为几百兆赫的晶体 管 。因此这些器件的电源必须对地去耦,在尽量靠近IC高频处返回以防止在甚高频情况下的不 稳定性。使用的这种去耦电容必须具有低自感而且其引线应该尽可能短(最好用10~100 nF 表面安装陶瓷电容芯片,但其引脚长度如果小于2 mm一般最为有效,见图16?5。)
低频去耦也很重要,因为电源抑制(PSR)通常在直流条件下规定并且随电源脉动频率的 增加而明显变坏。在某些高增益应用中,通过公共电源阻抗的反馈
信号干扰
理想的高频去耦要求:

1.低电感电容器(单片陶瓷电容器)

2.靠紧集成电路安装

3.短引脚电容器

4.短而宽的导电带

使用钽电解电容进行旁路可提供好的低频去耦。

这种长引线没有好处
信号干扰
能够产生低频不稳定(低音频振荡)。但对每个集成电路都进行低频去耦,通常是没有必要的 。 电源去耦不只是防止不稳定。运算放大器(至少)是有四个端子的器件,因为对于两个信 号输入端和一个信号输出端来说肯定有一个返回路径。习惯上把运算放大器的两个电源(指 有正、负电源的运算放大器)的公共端看作输出信号的返回路径,但实际上,其中一个电源 将是真实的高频返回路径。所以对放大器这个电源端的去耦问题,必须既要考虑正常高频去 耦又要考虑输出地返回路径的去耦。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分