×

这10个程序员必知的基础算法,你都了解吗?我们一起来学习下资料下载

消耗积分:2 | 格式:pdf | 大小:133.82KB | 2021-04-22

时见栖鸦

分享资料个

1、快速排序算法 快速排序是由东尼•霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他Ο(nlogn)算法更快,因为它的内部循环(innerloop)可以在大部分的架构上很有效率地被实现出来。 快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。 算法步骤: (1)从数列中挑出一个元素,称为“基准”(pivot), (2)重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。 (3)递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。 递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 2、堆排序算法 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。 堆排序的平均时间复杂度为Ο(nlogn) 。 算法步骤: (1)创建一个堆H[0..n-1] (2)把堆首(最大值)和堆尾互换 (3)把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置 (4)重复步骤2,直到堆的尺寸为1 3、归并排序 归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。 算法步骤: (1)申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 (2)设定两个指针,最初位置分别为两个已经排序序列的起始位置 (3)比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 (4)重复步骤3直到某一指针达到序列尾 (5)将另一序列剩下的所有元素直接复制到合并序列尾 4、二分查找算法 二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为Ο(logn) 。 5、BFPRT(线性查找算法) BFPRT 算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。 算法步骤: (1)将n个元素每5个一组,分成n/5(上界)组。 (2)取出每一组的中位数,任意排序方法,比如插入排序。 (3)递归的调用selection算法查找上一步中所有中位数的中位数,设为x,偶数个中位数的情况下设定为选取中间小的一个。 (4)用x来分割数组,设小于等于x的个数为k,大于x的个数即为n-k。 (5)若i==k,返回x;若ik,在大于x的元素中递归查找第i-k小的元素。 终止条件:n=1时,返回的即是i小元素。 6、DFS(深度优先搜索) 深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。 深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。 算法步骤: (1)访问顶点v; (2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问; (3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 上述描述可能比较抽象,举个实例:

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !