关于Halcon OCR识别

描述

OCR(Optical Character Recognition),光学字符识别的英文缩写。

OCR主要步骤

图像预处理

目标区域分割(ROI)

字符识别

结果处理

1. 图像预处理

对原始图像进行灰度化,二值化,模板匹配,降噪,增强等!

2.目标区域分割(ROI)

对预处理后的图像进行ROI提取,分割出单个字符组成的区域

3.字符识别,即模式识别技术

训练OCR,利用大量的模板图片训练出一个字符分类器

使用OCR,将训练好的分类器用于字符分类,类似于手写数字识别!

4.结果处理

将识别完的文字按特定的次序和规则组合输出!

上述4个步骤中,OCR的核心部分自然是第3步,即模式识别技术

模式识别技术

训练分类器

第一步:将分割好的字符区域加入训练集,使用函数

append_ocr_trainf(Character,Image::Class,TrainingFile:)

参数解析:

Character:字符区域

Image:灰度图像

Class:分类标签

TrainingFile:训练集文件名,一般后缀为.trf

功能说明:用于制作训练集,使用与TrainingFile文件相同的训练文件格式,将字符附加到现有文件。如果该文件不存在,则生成新文件。TrainingFile如果未指定扩展名,则默认添加扩展名.trf

第二步:创建分类器,使用函数

create_ocr_class_mlp(::WidthCharacter, HeightCharacter,Interpolation,Features,Characters,NumHidden,Preprocessing,NumComponents,RandSeed:OCRHandle)

参数解析:

WidthCharacter:输入被分割的字符缩放到指定的宽度

HeightCharacter:输入被分割的字符缩放到指定的高度

Interpolation:缩放的插值方式

Features:特征类型,一般选’default’

Characters:分类的特征向量

NumHidden: MLP(多层感知器-人工神经网络)中隐藏层神经元的个数

Preprocessing:矢量特征转换的预处理类型

NumComponents:匹配字符的数量

RandSeed:随机种子

OCRHandle:OCR分类器的句柄

功能说明:创建一个MLP模型并初始化

第三步:训练、保存、清除分类器,使用函数

trainf_ocr_class_mlp(::OCRHandle,TrainingFile,MaxIterations,WeightTolerance,ErrorTolerance:Error,ErrorLog) write_ocr_class_mlp(::OCRHandle,FileName:) clear_ocr_class_mlp(:)

训练MLP分类器参数解析:

OCRHandle:OCR分类器的句柄

TrainingFile:训练集

MaxIterations:最大迭代次数

WeightTolerance:初始权重公差

ErrorTolerance:初始损失学习率

Error:整个训练集上的均差

ErrorLog:每一次训练的均差记录

功能说明:使用训练集训练模型,

保存分类器模型参数解析:

FileName:输出的模型文件名,不指定扩展名,则扩展名默认为.omc

功能说明:将训练好的模型保存为文件

清除分类器模型功能说明:清除模型,释放缓存

使用分类器

读取、使用训练好的模型分类的函数如下:

read_ocr_class_mlp(:OCRHandle) do_ocr_single_class_mlp(Character,Image::OCRHandle,Num:Class,Confidence) do_ocr_multi_class_mlp(Character,Image:Class,Confidence)

读取模型函数参数解析:

FileName:模型文件名,如果未指定扩展名,则默认使用扩展名.omc

OCRHandle:成功读取模型后生成的模型句柄

功能说明:从模型文件中读出模型

模型单个字符识别参数解析:

Character:字符区域

Image:字符图片

Num:输出概率最大的前Num个分类类别

Class:输出类别

Confidence:输出分类的置信度

功能说明:对单个区域进行的字符识别

模型多个字符识别参数解析:

Class:输出的分类数组

功能说明:输出多个字符区域的类别

其它函数

获取训练集信息:

read_ocr_trainf_names (: CharacterNames, CharacterCount)

参数解析:

TrainingFile:训练集

CharacterNames:输出分类数组

CharacterCount:训练集字符区域总数

完整示例代码如下(仅作为代码示例,无法运行):

WindowHandle:=3600 dev_open_window (0, 0, 512, 512, ‘black’, WindowHandle) gen_empty_obj (EmptyObject) read_image (Image, ‘test1.jpg’) rgb1_to_gray (Image, GrayImage) for Index := 1 to 4 by 1 disp_message (WindowHandle, ‘手动ROI’,‘window’, 12, 12, ‘yellow’, ‘false’) draw_rectangle1 (WindowHandle, Row1, Column1, Row2, Column2) gen_rectangle1 (Rectangle, Row1, Column1, Row2, Column2) reduce_domain (GrayImage, Rectangle, ImageReduced1) threshold (ImageReduced1, Region1, 128, 255) concat_obj (EmptyObject, Region1, EmptyObject) endfor words:=[‘1’,‘2’,‘3’,‘4’] *按列位置排序 sort_region (EmptyObject, SortedRegions1, ‘character’, ‘true’, ‘column’) FontName := ‘F:DataSetNum’ TrainingFileName := FontName+‘.trf’ for Index1:=1 to 4 by 1 select_obj (SortedRegions1, ObjectSelected1, Index1) append_ocr_trainf (ObjectSelected1, Image, words[Index1-1], TrainingFileName) endfor read_ocr_trainf_names (TrainingFileName, CharacterNames, CharacterCount) create_ocr_class_mlp (8, 10, ‘constant’, ‘default’, CharacterNames, 80, ‘none’, 10, 42, OCRHandle) trainf_ocr_class_mlp (OCRHandle, TrainingFileName, 200, 1, 0.01, Error, ErrorLog) write_ocr_class_mlp (OCRHandle, FontName) *导入另一张做测试的图 read_image (Image1, ‘test2.jpg’) threshold (Image1, testwordregion, 125, 255) connection (testwordregion, ConnectedwordRegions) select_shape (ConnectedwordRegions, SelectedwordRegions, ‘height’, ‘and’, 50, 250) sort_region (SelectedwordRegions, SortedRegions2, ‘upper_left’, ‘true’, ‘column’) count_obj(SortedRegions2, Number) *开始识别 read_ocr_class_mlp (FontName, OCRHandle1) do_ocr_multi_class_mlp (SortedRegions2, Image1, OCRHandle1, Class, Confidence) *显示结果 disp_message(WindowHandle, ‘识别结果:’, ‘image’, 30, 50, ‘white’, ‘false’) for i:=1 to Number by 1 disp_message(WindowHandle, Class[i-1], ‘image’, 30, 120+40*i, ‘yellow’, ‘false’) endfor

Halcon的OCR模型主要有多层神经网络MLP、支持向量机SVM、K最近邻KNN、卷积神经网络CNN四种,以上关于MLP的各类函数,其它模型也有对应的函数,这里就不作详细介绍了。在OCR领域,CNN和MLP应用比较广泛,而SVM在打印体的识别上也可以使用,KNN的计算量和模型原理并不适合用于多属性(点)的算法训练!

责任编辑:lq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分