卷积神经网络结构_卷积神经网络训练过程

电子说

1.3w人已加入

描述

卷积神经网络结构

一个卷积神经网络主要由以下5种结构组成:

卷积神经网络

1.输入层。输入层是整个神经网络的输入,在处理图像的卷积神经网络中,它一般代表了一张图片的像素矩阵。比如在图6-7中,最左侧的三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道(channel)。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。从输入层开始,卷积神经网络通过不同的神经网络结构下将上一层的三维矩阵转化为下一层的三维矩阵转化为下一层的三维矩阵,直到最后的全连接层。

2.卷积层。从名字就可以看出,卷积层是一个卷积神经网络中最重要的部分。和传统全连接层不同,卷积层中的每一个节点的输入只是上一层神经网络中的一小块,这个小块的大小有3*3或者5*5。卷积层试图将神经网络中的每一个小块进行更加深入的分析从而得到抽象程度更高的特征。一般来说,通过卷积层处理的节点矩阵会变得更深,所以图6-7中可以看到经过卷积层之后的节点矩阵的深度会增加。

3.池化层。池化层神经网络不会改变三维矩阵的深度,但是它可以缩小矩阵的大小。池化操作可以认为是将一张分辨率较高的图片转化为分辨率较低的图片。通过池化层,可以进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中的参数的目的。

4.全连接层。如图6-7所示,在经过多轮卷积层和池化层处理之后,在卷积神经网络的最后一般会由1到2个全连接 层来给出最后的分类结果。经过几轮的卷积层和池化层的处理之后,可以认为图像中的信息已被抽象成了信息含量更高的特征。我们可以将卷积层和池化层看成自动图像特征提取的过程。在特征提取完成之后,仍然需要使用全连接层来完成分类任务。

5.Softmax层。Softmax层主要用于分类问题。经过Softmax层,可以得到当前样例中属于不同种类的概率分布情况。

卷积神经网络训练过程

卷积神经网络的训练过程分为两个阶段。第一个阶段是数据由低层次向高层次传播的阶段,即前向传播阶段。另外一个阶段是,当前向传播得出的结果与预期不相符时,将误差从高层次向底层次进行传播训练的阶段,即反向传播阶段。训练过程如图4-1所示。训练过程为:

1、网络进行权值的初始化;

2、输入数据经过卷积层、下采样层、全连接层的向前传播得到输出值;

3、求出网络的输出值与目标值之间的误差;

4、当误差大于我们的期望值时,将误差传回网络中,依次求得全连接层,下采样层,卷积层的误差。各层的误差可以理解为对于网络的总误差,网络应承担多少;当误差等于或小于我们的期望值时,结束训练。

5、根据求得误差进行权值更新。然后在进入到第二步。

卷积神经网络

图4-1卷积神经网络的训练过程

1.1卷积神经网络的前向传播过程

在前向传播过程中,输入的图形数据经过多层卷积层的卷积和池化处理,提出特征向量,将特征向量传入全连接层中,得出分类识别的结果。当输出的结果与我们的期望值相符时,输出结果。

1.1.1卷积层的向前传播过程

卷积层的向前传播过程是,通过卷积核对输入数据进行卷积操作得到卷积操作。数据在实际的网络中的计算过程,我们以图3-4为例,介绍卷积层的向前传播过程。其中一个输入为15个神经元的图片,卷积核为2×2×1的网络,即卷积核的权值为W1,W2,W3,W4。那么卷积核对于输入数据的卷积过程,如下图4-2所示。卷积核采用步长为1的卷积方式,卷积整个输入图片,形成了局部感受野,然后与其进行卷积算法,即权值矩阵与图片的特征值进行加权和(再加上一个偏置量),然后通过激活函数得到输出。

卷积神经网络

图4-2图片深度为1,卷积层的向前传播过程

而在图3-4中,图片深度为2时,卷积层的向前传播过程如图4-3所示。输入的图片的深度为4×4×2,卷积核为2×2×2,向前传播过程为,求得第一层的数据与卷积核的第一层的权值的加权和,然后再求得第二层的数据与卷积核的第二层的权值的加权和,两层的加权和相加得到网络的输出。

卷积神经网络

图4-3图片深度为2,卷积层的向前传播过程

1.1.2下采样层的向前传播过程

上一层(卷积层)提取的特征作为输入传到下采样层,通过下采样层的池化操作,降低数据的维度,可以避免过拟合。如图4-4中为常见的池化方式示意。最大池化方法也就是选取特征图中的最大值。均值池化则是求出特征图的平均值。随机池化方法则是先求出所有的特征值出现在该特征图中的概率,然后在来随机选取其中的一个概率作为该特征图的特征值,其中概率越大的选择的几率越大。

卷积神经网络

图4-4池化操作示意图

1.1.3全连接层的向前传播过程

特征图进过卷积层和下采样层的特征提取之后,将提取出来的特征传到全连接层中,通过全连接层,进行分类,获得分类模型,得到最后的结果。图4-5为一个三层的全连接层。假设卷积神经网络中,传入全连接层的特征为x1,x2。则其在全连接层中的向前传播过程如图4-5所示。第一层全连接层有3个神经元y1,y2,y3。这三个节点的权值矩阵为W,其中b1,b2,b3分别为节点y1,y2,y3的偏置量。可以看出,在全连接层中,参数的个数=全连接层中节点的个数×输入的特征的个数+节点的个数(偏置量)。其向前传递过程具体如图所示,得到输出矩阵后,经过激励函数f(y)的激活,传入下一层。

卷积神经网络

图4-5全连接层的向前传播过程

1.2卷积神经网络的反向传播过程

当卷积神经网络输出的结果与我们的期望值不相符时,则进行反向传播过程。求出结果与期望值的误差,再将误差一层一层的返回,计算出每一层的误差,然后进行权值更新。该过程的主要目的是通过训练样本和期望值来调整网络权值。误差的传递过程可以这样来理解,首先,数据从输入层到输出层,期间经过了卷积层,下采样层,全连接层,而数据在各层之间传递的过程中难免会造成数据的损失,则也就导致了误差的产生。而每一层造成的误差值是不一样的,所以当我们求出网络的总误差之后,需要将误差传入网络中,求得该各层对于总的误差应该承担多少比重。

反向传播的训练过程的第一步为计算出网络总的误差:求出输出层n的输出a(n)与目标值y之间为误差。计算公式为:

卷积神经网络

 

其中,为激励函数的导函数的值。

1.2.1全连接层之间的误差传递

求出网络的总差之后,进行反向传播过程,将误差传入输出层的上一层全连接层,求出在该层中,产生了多少误差。而网络的误差又是由组成该网络的神经元所造成的,所以我们要求出每个神经元在网络中的误差。求上一层的误差,需要找出上一层中哪些节点与该输出层连接,然后用误差乘以节点的权值,求得每个节点的误差,具体如图所示:

卷积神经网络

图4-6全连接层中误差的传递过程

1.2.2当前层为下采样层,求上一层的误差

在下采样层中,根据采用的池化方法,把误差传入到上一层。下采样层如果采用的是最大池化(max-pooling)的方法,则直接把误差传到上一层连接的节点中。果采用的是均值池化(meanpooling)的方法,误差则是均匀的分布到上一层的网络中。另外在下采样层中,是不需要进行权值更新的,只需要正确的传递所有的误差到上一层。

1.2.3当前层为卷积层,求上一层的误差

卷积层中采用的是局部连接的方式,和全连接层的误差传递方式不同,在卷积层中,误差的传递也是依靠卷积核进行传递的。在误差传递的过程,我们需要通过卷积核找到卷积层和上一层的连接节点。求卷积层的上一层的误差的过程为:先对卷积层误差进行一层全零填充,然后将卷积层进行一百八十度旋转,再用旋转后的卷积核卷积填充过程的误差矩阵,并得到了上一层的误差。如图4-7为卷积层的误差传递过程。图右上方为卷积层的向前卷积过程,而右下方为卷积层的误差传递过程。从图中可以看出,误差的卷积过程正好是沿着向前传播的过程,将误差传到了上一层。

卷积神经网络

图4-7卷积层的误差传递过程

1.3卷积神经网络的权值更新

1.3.1卷积层的权值更新

卷积层的误差更新过程为:将误差矩阵当做卷积核,卷积输入的特征图,并得到了权值的偏差矩阵,然后与原先的卷积核的权值相加,并得到了更新后的卷积核。如图4-8,图中可以看出,该卷积方式的权值连接正好和向前传播中权值的连接是一致的。

卷积神经网络

图4-8卷积核的权值更新过程

1.3.2全连接层的权值更新过程

全连接层中的权值更新过程为:

1、求出权值的偏导数值:学习速率乘以激励函数的倒数乘以输入值;

2、原先的权值加上偏导值,得到新的权值矩阵。具体的过程如图4-9所示(图中的激活函数为Sigmoid函数)。

卷积神经网络

图4-9全连接层的权值更新过程

责任编辑:YYX

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分