深度分析RNN的模型结构,优缺点以及RNN模型的几种应用

描述

神经网络是深度学习的载体,而神经网络模型中,最经典非RNN模型所属,尽管它不完美,但它具有学习历史信息的能力。后面不管是encode-decode 框架,还是注意力模型,以及自注意力模型,以及更加强大的Bert模型家族,都是站在RNN的肩上,不断演化、变强的。

这篇文章,阐述了RNN的方方面面,包括模型结构,优缺点,RNN模型的几种应用,RNN常使用的激活函数,RNN的缺陷,以及GRU,LSTM是如何试图解决这些问题,RNN变体等。

这篇文章最大特点是图解版本,其次语言简练,总结全面。

概述

传统RNN的体系结构。Recurrent neural networks,也称为RNNs,是一类允许先前的输出用作输入,同时具有隐藏状态的神经网络。它们通常如下所示:

函数

对于每一时步 , 激活函数   ,输出 被表达为:

这里是时间维度网络的共享权重系数

是激活函数

函数

下表总结了典型RNN架构的优缺点:

 

 

处理任意长度的输入 计算速度慢
模型形状不随输入长度增加 难以获取很久以前的信息
计算考虑了历史信息 无法考虑当前状态的任何未来输入
权重随时间共享  
优点 缺点

RNNs应用

RNN模型主要应用于自然语言处理和语音识别领域。下表总结了不同的应用:

一对一

函数

传统神经网络

一对多

函数

音乐生成

多对一

函数

函数

机器翻译函数

RNN 类型图解例子

对于RNN网络,所有时间步的损失函数 是根据每个时间步的损失定义的,如下所示:损失函数

时间反向传播

在每个时间点进行反向传播。在时间步,损失相对于权重矩阵的偏导数表示如下:

处理长短依赖

常用激活函数

RNN模块中最常用的激活函数描述如下:

5函数

 

   

 

函数

函数

SigmoidTanhRELU

梯度消失/爆炸

在RNN中经常遇到梯度消失和爆炸现象。之所以会发生这种情况,是因为很难捕捉到长期的依赖关系,因为乘法梯度可以随着层的数量呈指数递减/递增。

梯度修剪

梯度修剪是一种技术,用于执行反向传播时,有时遇到的梯度爆炸问题。通过限制梯度的最大值,这种现象在实践中得以控制。

函数

门的类型

为了解决消失梯度问题,在某些类型的RNN中使用特定的门,并且通常有明确的目的。它们通常标注为,等于:

其中,是特定于门的系数,是sigmoid函数。主要内容总结如下表:

函数

Gated Recurrent Unit(GRU)和长-短期记忆单元(LSTM)处理传统RNNs遇到的消失梯度问题,LSTM是GRU的推广。下表总结了每种结构的特征方程:GRU/LSTM

函数

注:符号表示两个向量之间按元素相乘。

RNN的变体

下表总结了其他常用的RNN模型:

函数

函数

Bidirectional (BRNN)Deep (DRNN)

编辑:jq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分