如何利用AI及数字孪生技术推动油气行业数字化转型

描述

1油气行业数字化转型趋势

油气行业是一个典型的重资产行业,其巨大的产业链涵盖了上游的勘探、开发、生产;中下游的储运、炼化、油气分销甚至延申到化工行业的专用化学品、工业气体、无机物以及水处理等。

随着国际市场原油价格波动剧烈,勘探开发难度不断加大,以及新能源供给的不断增加,油气行业面临着日益严峻的挑战,数字化转型已成为行业降本增效、提升质量的必由之路。

有鉴于此,全球各大油气公司纷纷开展数字化转型之路,有全力押注数字化转型的如 BP、挪威国家石油等公司;有职能部门牵头试水轻度整合的如沙特阿美,美孚等公司;也有业务单元牵头推进数字化改革的如壳牌、雪佛龙等公司,对于一些中小油气公司,数字化转型更是决定了企业的生死成败。

油气行业的数字化转型关键技术包含了大数据分析工具、物联网、移动设备、云计算、机器人和无人机、人工智能等,其中大数据和人工智能是当前的关键。

转型的目标包含了生产数字化,为现场作业设备建立数字化体系实现感知和远程控制;运营数字化,建立智能数字化运营体系;贸易数字化,建立数字化的油气交易、服务、风险防控平台;和设计数字化,利用大数据、数字孪生技术等实现产品设计的跨领域、跨学科协作,提高开发效率,降低开发成本。

2MathWorks 油气行业应用概述

计算机视觉

计算机视觉

MathWorks 产品在油气行业的应用主要分为大数据和 AI,数字孪生技术两大板块。

其中,大数据和 AI 的应用主要有 4 个维度。

通过数据分析和机器学习研究油气的特性,比如通过数据进行地震、压裂分析,钻柱的振动分析等;

通过图像处理、深度学习等方式实现油气行业的智能化应用,比如油藏的地质分析;

简化和自动化能源交易和能源管理任务,运行 Monte Carlo 仿真进行估值和风险评估等;

预测性维护也叫设备健康管理,通过 MATLAB 的预测性维护工具箱,识别故障、设计状态指示器,并估算关键设备(如泵和压缩机等)的剩余使用寿命,变计划性维护为预测性维护,极大地降低成本,提高效率。

数字孪生技术的应用同样有4个维度。

钻井系统建模和数字孪生,为系统和多个子系统建立数字化模型以验证控制效果和系统安全稳定性;

MBD & Polyspace,使用基于模型设计进行产品开发、测试和验证,同时对于已有的手工代码进行高安全等级和行业标准检验以确保代码层级的安全性;

实时仿真 & HIL(硬件在环),方便快捷地实现实时测试,更好地了解系统行为和控制效果;

最后所有的大数据及数字孪生算法通过代码生成,Production Server,Web Application Server 等工具可以轻松地部署到边缘设备、IT/OT 系统和企业云端等,为实际的生产、运营服务。

3AI 及大数据

计算机视觉

MathWorks 提供了一系列用于大数据分析和人工智能的工具箱,以方便用户进行信号处理、时频域计量建模和人工智能模型训练等。

其广泛地支持运营数据、井下数据、操作日志、地下数据、以及地震图像、卫星高光谱图像等数据格式。

以机器学习为例,MathWorks 提供了完整的工具链,使得机器学习/深度学习工作流无缝化对接,涵盖了数据读取,数据预处理,特征提取,模型训练,模型矫正和部署集成。

MATLAB 支持各种不同的文件格式、数据库以及web和云存储系统,我们提供各种工具帮助用户清理“脏”数据,包括处理丢失的数据、对来自不同传感器数据进行时间对准及过滤噪声干扰等;

为信号、图像、视频、音频和文本数据提供特征工程技术以提取时频域特征;

MATLAB 提供的 APP 助力于用户方便快捷地进行模型训练和模型矫正,最后部署到边缘设备、IT/OT 系统和企业云端。

下面我们来看两个油气行业利用大数据和 AI 的例子:

壳牌石油地质学家使用机器学习进行油藏特征描述

左: 三维地震数据立体水平切片,黑色为一条大型沟带(潜在的储层目标)

右: 预测可能的目标储层内部地质构造

在油气勘探中,地质学家们常利用地震数据反演地下地质构造以识别潜在的油藏,通常这些图像缺乏必要的分辨率来捕捉复杂的岩石层模式和其他地层细节。

分辨率不高的成像可能导致钻井效率低下成本超高,也可能导致过于乐观的产量预测。

壳牌公司希望开发一种算法,它可以利用现有的地震测量数据和已知地质构造的数据库来推断新的类似的,低分辨率的地质构造特征。

他们使用曲线拟合工具箱的加权三次样条函数进行曲率分析,以定量地描述从三维地震数据中提取特征,使用 Database Toolbox 将算法连接到一个包含卫星图像、地形、岩心数据、地质构造等的数据库;

利用统计学工具箱和机器学习工具箱,开发了一个回归模型和预测算法,结合数据库指标、从地震数据中提取的特征和已知的比例关系,预测地质厚度、宽度和其他地层特征;

使用 Mapping Toolbox 标识识别位置,同时使用 MATLAB Production Server 将该算法发布到全公司范围内应用。

计算机视觉

贝克休斯将机器学习用于诊断、预测和降低压窜影响

为了提高原油产量开采所有可能的储层,同一油田范围内打出越来越多的加密井,而水力压裂法普遍应用更多的压裂段,每段水平段完井含沙量更高、簇距更近导致井间压窜成为必然结果;

据斯伦贝谢公司的统计以美国特拉华盆地为例,支撑剂总量和水平段长度归一化处理后,当井间距小于 488 米时发生压窜的概率为81%,而距离缩小到 244 米时发生压窜的概率超过 91%。

压窜的直接结果导致母井产量下降 30% 以上,甚至导致设备损坏而永久停产。

但是压窜是一个非常复杂的问题,影响因素众多,可控因素包括井间距、井位排列、压裂类型、注入速率、注入压力、流体类型、支撑剂浓度体积、岩层构造等,还有一些不可控因素影响如天然断裂构造、地应力和断裂屏障模式等。如何找到其中的关系模式成为诊断、预测和降低压窜影响的关键。

贝克休斯公司使用机器学习工具,利用作业前确定的参数数据和母井的时间序列压力数据开发压窜预测算法。

工程师们提取原始数据,在进行数据清洗之后结合行业领域知识和数据分析方法进行数据特征提取;然后通过机器学习对数据进行分类和标签,以识别井内和水平段之间的相互作用,同时与母井压力表的监测数据结合起来,进行异常检测和诊断,最后将结果可视化呈现并部署在企业系统中。通过这种方式识别了发生压窜的原因,并输出一系列规则及应对决策机制。

4

数字孪生技术

计算机视觉

数字孪生(Digital Twin)是在基于模型设计 MBD(Model-Based-Design)概念基础之上深入发展起来的,是指充分利用物理模型、历史数据等,借助辅助工具完成的多领域、跨学科的仿真过程,在虚拟空间中完成对物理系统整个生命周期的映射。从而对设备、系统的健康状况、性能、发展趋势进行预判,同时结合实际的数据可对现场故障进行复现,以驱动维护更新和优化。

在油气行业,数字孪生技术被大量地用于小到一个设备,大到钻井、油田的开发和虚拟仿真。上图为在 MATLAB/Simulink 中为绞车钻井系统建立的数字孪生模型,包括了控制系统及被控对象。通过数字孪生模型就可以对整个钻井系统的运行进行全面的仿真和测试,尤其是在一些极限工况下系统的反应,从而确保实际的物理系统安全稳定运行。

计算机视觉

同时,MathWorks 提供了帮助用户实现设计、实施、测试的完整工具链。

模型仿真测试通过之后可以自动地将被控物理对象生成 C/C++ 等代码,编译下载到工控机等仿真测试设备;

而控制算法可以从模型自动生成 C/C++/PLC 等代码,通过 IDE 环境集成并下载到实际的工业控制器中,这样两部分就可以协同仿真完成系统的硬件在环实时测试 HIL(Hardware-in-the-Loop),确保实时性能无误后在投入实际系统使用。

下面我们来看两个数字孪生技术在油气行业应用的例子:

 

贝克休斯公司利用数字孪生改进油气钻探设备的精度

使用 Kymera 混合钻头的 AutoTrak 曲线旋转式可导向系统

随着可开采油气储藏变得越来越稀少,石油公司通常只好钻探三维井,延伸数千米才能到达新储层。在钻探过程中需要精确的导向控制,以便最大程度地接触储层并避免碰到现有油井。

使用来自磁力计和加速度计的信号对钻探系统的倾角和方位角进行计算。井下振动和冲击使这些信号失真,导致随井深而增加的井孔位置的不确定性。

Baker Hughes 采用 MATLAB 和 Simulink 的基于模型的设计,建立了新的开发流程。他们从在桌面仿真中测试现有算法开始,然后使用建模和自动代码生成来改进算法。

他们使用 Simulink Check 和 Simulink Coverage 检查是否符合 MathWorks Automotive Advisory Board (MAAB) 建模标准,并测量他们的测试用例的模型覆盖率,最大限度地减少了昂贵的现场测试的同时,最终出色地完成了设备精度的提升,并且为来来项目的开发奠定了可复用的模型基础。

计算机视觉

计算机视觉

计算机视觉

NOV 使用基于 Speedgoat 的 HIL 系统进行实时边缘分析

NOV(美国国民油井华高公司)使用基于 Speedgoat 的硬件在环系统进行实时边缘分析和测试。

他们在后台开发的模型需要在实时操作系统和数据上运行,钻机的数据传输、定位和移动性都进行实时计算,以实现钻井自动化。

Speedgoat 是 MathWorks 所推荐的实时仿真系统,用于 HIL(硬件在环测试),NOV 在 Simulink Real-Time 和 Speedgoadt 中开发 HIL 系统,在 MATLAB/Simulink 中实现了完整的敏捷开发。

通过这种方式 NOV 开发了系统故障早期检测算法,经过 HIL 实时测试后快速地部署在钻井控制系统中。

5

总结与展望

数字化转型是传统油气行业发展的必然趋势,各大油气公司的数字化革新也正在步入深水区。

未来十年油气行业的数字化转型核心必然聚焦于资产生命周期的数字化管理、循环协作式生态系统的建立、开辟新兴业务空间、以及传统化石能源和新能源的结合。

在这个过程中,越来越多以大数据、人工智能、企业云为代表的新技术被用于数字化转型。

短期内建立起数字化平台实现勘探、开发、生产、储运、炼化、交易统一的数字化管控;

中期利用传感器技术形成大数据资源辅助油气工程决策;

长期充分利用大数据和 AI 算法实现对生产过程的优化以提高效能、降低成本。

MathWorks 的产品主要包含 MATLAB 和 Simulink 两大平台,其中 MATLAB 是一个用于算法开发、数据分析、可视化和数值计算的编程环境,Simulink 是一个用于系统设计、仿真测试和自动代码生成的图形化环境。

除此之外,还为各个特定领域应用推出了超过 100 个附加产品如数学优化、统计学模型、信号处理、计算机视觉、物理建模、控制系统等一系列工具箱,在油气行业的上下游、化工和设备等行业得到了普遍应用。

编辑:jq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分