由浅入深尽享STM32标准库开发的乐趣

电子说

1.3w人已加入

描述

摘要:从STM32新建工程、编译下载程序出发,让新手由浅入深,尽享STM32标准库开发的乐趣。

自从CubeMX等图像配置软件的出现,同学们往往点几下鼠标就解决了单片机的配置问题。对于追求开发速度的业务场景下,使用快速配置软件是合理的,高效的,但对于学生的学习场景下,更为重要的是知其然并知其所以然。

以下是学习(包括但不限于)嵌入式的三个重要内容,

1、学会如何参考官方的手册和官方的代码来独立写自己的程序。

2、积累常用代码段,知道哪里的问题需要哪些代码处理。

3、跟随大佬步伐,一步一个脚印。

首先:我们都知道编程时一般查的是《参考手册》,而进行芯片选型或需要芯片数据时,查阅的是《数据手册》。此外市面上所有关于STM32的书籍都是立足于前二者(+Cortex内核手册)进行编著。

其次:要分清什么是内核外设与内核之外的外设,为了便于区分,按照网上的一种说法,将“内核之外的外设”以“处理器外设”代替。再者:如今很少使用标准库了,都是HAL库,但作为高校目前教学方式,我们将以STM32f10xxx为例对标准库开发进行概览。

一、STM32 系统结构

STM32f10xxx系统结构

内核IP

从结构框图上看,Cortex-M3内部有若干个总线接口,以使CM3能同时取址和访内(访问内存),它们是:指令存储区总线(两条)、系统总线、私有外设总线。有两条代码存储区总线负责对代码存储区(即 FLASH 外设)的访问,分别是 I-Code 总线和 D-Code 总线。

I-Code用于取指,D-Code用于查表等操作,它们按最佳执行速度进行优化。

系统总线(System)用于访问内存和外设,覆盖的区域包括SRAM,片上外设,片外RAM,片外扩展设备,以及系统级存储区的部分空间。

私有外设总线负责一部分私有外设的访问,主要就是访问调试组件。它们也在系统级存储区。

还有一个DMA总线,从字面上看,DMA是data memory access的意思,是一种连接内核和外设的桥梁,它可以访问外设、内存,传输不受CPU的控制,并且是双向通信。简而言之,这个家伙就是一个速度很快的且不受老大控制的数据搬运工。

处理器外设(内核之外的外设)

从结构框图上看,STM32的外设有串口、定时器、IO口、FSMC、SDIO、SPI、I2C等,这些外设按照速度的不同,分别挂载到AHB、APB2、APB1这三条总线上。

二、寄存器什么是寄存器?寄存器是内置于各个IP外设中,是一种用于配置外设功能的存储器,并且有想对应的地址。一切库的封装始于映射。

是不是“又臭又长”,如果进行寄存器开发,就需要怼地址以及对寄存器进行字节赋值,不仅效率低而且容易出错。

来,开个玩笑。

你也许听说过“国际C语言乱码大赛(IOCCC)”下面这个例子就是网上广为流传的 一个经典作品:

#include 《stdio.h》

main(t,_,a)char *a;{return!0《t?t《3?main(-79,-13,a+main(-87,1-_,

main(-86,0,a+1)+a)):1,t《_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_《13?

main(2,_+1,“%s %d %d

”):9:16:t《0?t《-72?main(_,t,

“@n‘+,#’/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#

;#q#n+,/+k#;*+,/‘r :’d*‘3,}{w+K w’K:‘+}e#’;dq#‘l

q#’+d‘K#!/+k#;q#’r}eKK#}w‘r}eKK{nl]’/#;#q#n‘){)#}w’){){nl]‘/+#n’;d}rw‘ i;#

){nl]!/n{n#’; r{#w‘r nc{nl]’/#{l,+‘K {rw’ iK{;[{nl]‘/w#q#n’wk nw‘

iwk{KK{nl]!/w{%’l##w#‘ i; :{nl]’/*{q#‘ld;r’}{nlwb!/*de}‘c

;;{nl’-{}rw]‘/+,}##’*}#nc,‘,#nw]’/+kd‘+e}+;#’rdq#w! nr‘/ ’) }+}{rl#‘{n’ ‘)#

}’+}##(!!/”)

:t《-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a==‘/’)+t,_,a+1)

:0《t?main(2,2,“%s”):*a==‘/’||main(0,main(-61,*a,

“!ek;dc i@bK‘(q)-[w]*%n+r3#l,{}:

uwloca-O;m.vpbks,fxntdCeghiry”),a+1);}

库的存在就是为了解决这类问题,将代码语义化。语义化思想不仅仅是嵌入式有的,前端代码也在追求语义特性。

三、万物始于点灯

(1)内核库文件分析

cor_cm3.h

这个头文件实现了:

1、内核结构体寄存器定义。

2、内核寄存器内存映射。

3、内存寄存器位定义。跟处理器相关的头文件stm32f10x.h实现的功能一样,一个是针对内核的寄存器,一个是针对内核之外,即处理器的寄存器。

misc.h

内核应用函数库头文件,对应stm32f10x_xxx.h。

misc.c

内核应用函数库文件,对应stm32f10x_xxx.c。在CM3这个内核里面还有一些功能组件,如NVIC、SCB、ITM、MPU、CoreDebug,CM3带有非常丰富的功能组件,但是芯片厂商在设计MCU的时候有一些并不是非要不可的,是可裁剪的,比如MPU、ITM等在STM32里面就没有。

其中NVIC在每一个CM3内核的单片机中都会有,但都会被裁剪,只能是CM3 NVIC的一个子集。在NVIC里面还有一个SysTick,是一个系统定时器,可以提供时基,一般为操作系统定时器所用。misc.h和mics.c这两个文件提供了操作这些组件的函数,并可以在CM3内核单片机直接移植。

(2)处理器外设库文件分析

startup_stm32f10x_hd.s

这个是由汇编编写的启动文件,是STM32上电启动的第一个程序,启动文件主要实现了

初始化堆栈指针 SP;

设置 PC 指针=Reset_Handler ;

设置向量表的地址,并 初始化向量表,向量表里面放的是 STM32 所有中断函数的入口地址

调用库函数 SystemInit,把系统时钟配置成 72M,SystemInit 在库文件 stytem_stm32f10x.c 中定义;

跳转到标号_main,最终去到 C 的世界。

system_stm32f10x.c

这个文件的作用是里面实现了各种常用的系统时钟设置函数,有72M,56M,48, 36,24,8M,我们使用的是是把系统时钟设置成72M。

Stm32f10x.h

这个头文件非常重要,这个头文件实现了:

1、处理器外设寄存器的结构体定义。

2、处理器外设的内存映射。

3、处理器外设寄存器的位定义。

关于 1 和 2 我们在用寄存器点亮 LED 的时候有讲解。

其中 3:处理器外设寄存器的位定义,这个非常重要,具体是什么意思?

我们知道一个寄存器有很多个位,每个位写 1 或者写 0 的功能都是不一样的,处理器外设寄存器的位定义就是把外设的每个寄存器的每一个位写 1 的 16 进制数定义成一个宏,宏名即用该位的名称表示,如果我们操作寄存器要开启某一个功能的话,就不用自己亲自去算这个值是多少,可以直接到这个头文件里面找。

我们以片上外设 ADC 为例,假设我们要启动 ADC 开始转换,根据手册我们知道是要控制 ADC_CR2 寄存器的位 0:ADON,即往位 0 写 1,即:

ADC-》CR2=0x00000001;

这是一般的操作方法。现在这个头文件里面有关于 ADON 位的位定义:

#define ADC_CR2_ADON ((uint32_t)0x00000001)

有了这个位定义,我们刚刚的代码就变成了:

ADC-》CR2=ADC_CR2_ADON

stm32f10x_xxx.h

外设 xxx 应用函数库头文件,这里面主要定义了实现外设某一功能的结构体,比如通用定时器有很多功能,有定时功能,有输出比较功能,有输入捕捉功能,而通用定时器有非常多的寄存器要实现某一个功能。

比如定时功能,我们根本不知道具体要操作哪些寄存器,这个头文件就为我们打包好了要实现某一个功能的寄存器,是以机构体的形式定义的,比如通用定时器要实现一个定时的功能,我们只需要初始化 TIM_TimeBaseInitTypeDef 这个结构体里面的成员即可,里面的成员就是定时所需要操作的寄存器。

有了这个头文件,我们就知道要实现某个功能需要操作哪些寄存器,然后再回手册中精度这些寄存器的说明即可。

stm32f10x_xxx.c

stm32f10x_xxx.c:外设 xxx 应用函数库,这里面写好了操作 xxx 外设的所有常用的函数,我们使用库编程的时候,使用的最多的就是这里的函数。

(3)SystemInit

工程中新建main.c 。

在此文件中编写main函数后直接编译会报错:

Undefined symbol SystemInit (referred from startup_stm32f10x_hd.o)。

❞错误提示说SystemInit没有定义。从分析启动文件startup_stm32f10x_hd.s时我们知道,

;Reset handler

Reset_Handler PROC

EXPORT Reset_Handler [WEAK]

IMPORT __main

;IMPORT SystemInit

;LDR R0, =SystemInit

BLX R0

LDR R0, =__main

BX R0

ENDP

汇编中;分号是注释的意思

第五行第六行代码Reset_Handler调用了SystemInit该函数用来初始化系统时钟,而该函数是在库文件system_stm32f10x.c中实现的。我们重新写一个这样的函数也可以,把功能完整实现一遍,但是为了简单起见,我们在main文件里面定义一个SystemInit空函数,为的是骗过编译器,把这个错误去掉。

关于配置系统时钟之后会出文章RCC时钟树详细介绍,主要配置时钟控制寄存器(RCC_CR)和时钟配置寄存器(RCC_CFGR)这两个寄存器,但最好是直接使用CubeMX直接生成,因为它的配置过程有些冗长。

如果我们用的是库,那么有个库函数SystemInit,会帮我们把系统时钟设置成72M。

现在我们没有使用库,那现在时钟是多少?答案是8M,当外部HSE没有开启或者出现故障的时候,系统时钟由内部低速时钟LSI提供,现在我们是没有开启HSE,所以系统默认的时钟是LSI=8M。

(4)库封装层级

达到第四层级便是我们所熟知的固件库或HAL库的效果。当然库的编写还需要考虑许多问题,不止于这些内容。我们需要的是了解库封装的大概过程。

将库封装等级分为四级来介绍是为了有层次感,就像打怪升级一样,进行认知理解的升级。

我们都知道,操作GPIO输出分三大步:

时钟控制:

STM32 外设很多,为了降低功耗,每个外设都对应着一个时钟,在系统复位的时候这些时钟都是被关闭的,如果想要外设工作,必须把相应的时钟打开。

STM32 的所有外设的时钟由一个专门的外设来管理,叫RCC(reset and clockcontrol),RCC 在STM32 参考手册的第六章。

STM32 的外设因为速率的不同,分别挂载到三条总系上:AHB、APB2、APB1,AHB为高速总线,APB2 次之,APB1 再次之。所以的IO 口都挂载到APB2 总线上,属于高速外设。

模式配置:

这个由端口配置寄存器来控制。端口配置寄存器分为高低两个,每4bit 控制一个IO 口,所以端口配置低寄存器:CRL 控制这IO 口的低8 位,端口配置高寄存器:CRH控制这IO 口的高8bit。

在4 位一组的控制位中,CNFy[1:0] 用来控制端口的输入输出,MODEy[1:0]用来控制输出模式的速率,又称驱动电路的响应速度,注意此处速率与程序无关,GPIO引脚速度、翻转速度、输出速度区别输入有4种模式,输出有4种模式,我们在控制LED 的时候选择通用推挽输出。

输出速率有三种模式:2M、10M、50M,这里我们选择2M。

电平控制:

STM32的IO口比较复杂,如果要输出1和0,则要通过控制:端口输出数据寄存器ODR来实现,ODR 是:Output data register的简写,在STM32里面,其寄存器的命名名称都是英文的简写,很容易记住。

从手册上我们知道ODR是一个32位的寄存器,低16位有效,高16位保留。低16位对应着IO0~IO16,只要往相应的位置写入0或者1就可以输出低或者高电平。

第一层级:基地址宏定义

STM32

时钟控制:

STM32

在STM32中,每个外设都有一个起始地址,叫做外设基地址,外设的寄存器就以这个基地址为标准按照顺序排列,且每个寄存器32位,(后面作为结构体里面的成员正好内存对齐)。

查表看到时钟由APB2外设时钟使能寄存器(RCC_APB2ENR)来控制,其中PB端口的时钟由该寄存器的位3写1使能。我们可以通过基地址+偏移量0x18,算出RCC_APB2ENR的地址为:0x40021018。那么使能PB口的时钟代码则如下所示:

#define RCC_APB2ENR *(volatile unsigned long *)0x40021018

// 开启端口B 时钟

RCC_APB2ENR |= 1《《3;

模式配置:

STM32

同RCC_APB2ENR一样,GPIOB的起始地址是:0X4001 0C00,我们也可以算出GPIO_CRL的地址为:0x40010C00。那么设置PB0为通用推挽输出,输出速率为2M的代码则如下所示:

STM32

同上,从手册中我们看到ODR寄存器的地址偏移是:0CH,可以算出GPIOB_ODR寄存器的地址是:0X4001 0C00 + 0X0C = 0X4001 0C0C。现在我们就可以定义GPIOB_ODR这个寄存器了,代码如下:

#define GPIOB_ODR *(volatile unsigned long *)0x40010C0C//PB0 输出低电平

GPIOB_ODR = 0《《0;

第一层级:基地址宏定义完成用STM32控制一个LED的完整代码:

#define RCC_APB2ENR *(volatile unsigned long *)0x40021018#define GPIOB_CRL *(volatile unsigned long *)0x40010C00#define GPIOB_ODR *(volatile unsigned long *)0x40010C0Cint main(void)

{

// 开启端口B 的时钟

RCC_APB2ENR |= 1《《3;

// 配置PB0 为通用推挽输出模式,速率为2M

GPIOB_CRL = (2《《0) | (0《《2);

// PB0 输出低电平,点亮LED

GPIOB_ODR = 0《《0;

}

void SystemInit(void)

{

}

第二层级:基地址宏定义+结构体封装

外设寄存器结构体封装

上面我们在操作寄存器的时候,操作的是寄存器的绝对地址,如果每个寄存器都这样操作,那将非常麻烦。我们考虑到外设寄存器的地址都是基于外设基地址的偏移地址,都是在外设基地址上逐个连续递增的,每个寄存器占32个或者16个字节,这种方式跟结构体里面的成员类似。

所以我们可以定义一种外设结构体,结构体的地址等于外设的基地址,结构体的成员等于寄存器,成员的排列顺序跟寄存器的顺序一样。这样我们操作寄存器的时候就不用每次都找到绝对地址,只要知道外设的基地址就可以操作外设的全部寄存器,即操作结构体的成员即可。

下面我们先定义一个GPIO寄存器结构体,结构体里面的成员是GPIO的寄存器,成员的顺序按照寄存器的偏移地址从低到高排列,成员类型跟寄存器类型一样。

typedef struct

{

volatile uint32_t CRL;

volatile uint32_t CRH;

volatile uint32_t IDR;

volatile uint32_t ODR;

volatile uint32_t BSRR;

volatile uint32_t BRR;

volatile uint32_t LCKR;

} GPIO_TypeDef;

在《STM32 中文参考手册》8.2 寄存器描述章节,我们可以找到结构体里面的7个寄存器描述。在点亮LED的时候我们只用了CRL和ODR这两个寄存器,至于其他寄存器的功能大家可以自行看手册了解。

在GPIO结构体里面我们用了两个数据类型,一个是uint32_t,表示无符号的32位整型,因为GPIO的寄存器都是32位的。这个类型声明在标准头文件stdint.h 里面使用typedef对unsigned int重命名,我们在程序上只要包含这个头文件即可。

另外一个是volatile作用就是告诉编译器这里的变量会变化不因优化而省略此指令,必须每次都直接读写其值,这样就能确保每次读或者写寄存器都真正执行到位。

STM32F1系列的GPIO端口分A~G,即GPIOA、GPIOB。。。。。。GPIOG。每个端口都含有GPIO_TypeDef结构体里面的寄存器,我们可以根据手册各个端口的基地址把GPIO的各个端口定义成一个GPIO_TypeDef类型指针,然后我们就可以根据端口名(实际上现在是结构体指针了)来操作各个端口的寄存器,代码实现如下:

#define GPIOA ((GPIO_TypeDef *) 0X4001 0800)#define GPIOB ((GPIO_TypeDef *) 0X4001 0C00)#define GPIOC ((GPIO_TypeDef *) 0X4001 1000)#define GPIOD ((GPIO_TypeDef *) 0X4001 1400)#define GPIOE ((GPIO_TypeDef *) 0X4001 1800)#define GPIOF ((GPIO_TypeDef *) 0X4001 1C00)#define GPIOG ((GPIO_TypeDef *) 0X4001 2000)

外设内存映射

讲到基地址的时候我们再引人一个知识点:Cortex-M3存储器系统,这个知识点在《Cortex-M3权威指南》第5章里面讲到。CM3的地址空间是4GB

我们这里要讲的是片上外设,就是我们所说的寄存器的根据地,其大小总共有512MB,512MB是其极限空间,并不是每个单片机都用得完,实际上各个MCU厂商都只是用了一部分而已。STM32F1系列用到了:0x4000 0000 ~0x5003 FFFF。现在我们说的STM32的寄存器就是位于这个区域

APB1、APB2、AHB 总线基地址

现在我们说的STM32的寄存器就是位于这个区域,这里面ST设计了三条总线:AHB、APB2和APB1,其中AHB和APB2是高速总线,APB1是低速总线。不同的外设根据速度不同分别挂载到这三条总线上。

从下往上依次是:APB1、APB2、AHB,每个总线对应的地址分别是:APB1:0x40000000,APB2:0x4001 0000,AHB:0x4001 8000。

这三条总线的基地址我们是从《STM32 中文参考手册》2.3小节—存储器映像得到的:APB1的基地址是TIM2定时器的起始地址,APB2的基地址是AFIO的起始地址,AHB的基地址是SDIO的起始地址。其中APB1地址又叫做外设基地址,是所有外设的基地址,叫做PERIPH_BASE。

现在我们把这三条总线地址用宏定义出来,以后我们在定义其他外设基地址的时候,只需要在这三条总线的基址上加上偏移地址即可,代码如下:

#define PERIPH_BASE ((uint32_t)0x40000000)#define APB1PERIPH_BASE PERIPH_BASE#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000)

GPIO 端口基地址

因为GPIO挂载到APB2总线上,那么现在我们就可以根据APB2的基址算出各个GPIO端口的基地址,用宏定义实现代码如下:

#define GPIOA_BASE (APB2PERIPH_BASE + 0x0800)#define GPIOB_BASE (APB2PERIPH_BASE + 0x0C00)#define GPIOC_BASE (APB2PERIPH_BASE + 0x1000)#define GPIOD_BASE (APB2PERIPH_BASE + 0x1400)#define GPIOE_BASE (APB2PERIPH_BASE + 0x1800)#define GPIOF_BASE (APB2PERIPH_BASE + 0x1C00)#define GPIOG_BASE (APB2PERIPH_BASE + 0x2000)

第二层级:基地址宏定义+结构体封装完成用STM32控制一个LED的完整代码:

#include 《stdint.h》#define __IO volatiletypedef struct

{

__IO uint32_t CRL;

__IO uint32_t CRH;

__IO uint32_t IDR;

__IO uint32_t ODR;

__IO uint32_t BSRR;

__IO uint32_t BRR;

__IO uint32_t LCKR;

} GPIO_TypeDef;

typedef struct

{

__IO uint32_t CR;

__IO uint32_t CFGR;

__IO uint32_t CIR;

__IO uint32_t APB2RSTR;

__IO uint32_t APB1RSTR;

__IO uint32_t AHBENR;

__IO uint32_t APB2ENR;

__IO uint32_t APB1ENR;

__IO uint32_t BDCR;

__IO uint32_t CSR;

} RCC_TypeDef;

#define PERIPH_BASE ((uint32_t)0x40000000)

#define APB1PERIPH_BASE PERIPH_BASE#define APB2PERIPH_BASE (PERIPH_BASE + 0x10000)#define AHBPERIPH_BASE (PERIPH_BASE + 0x20000)

#define GPIOA_BASE (APB2PERIPH_BASE + 0x0800)#define GPIOB_BASE (APB2PERIPH_BASE + 0x0C00)#define GPIOC_BASE (APB2PERIPH_BASE + 0x1000)

#define GPIOD_BASE (APB2PERIPH_BASE + 0x1400)#define GPIOE_BASE (APB2PERIPH_BASE + 0x1800)#define GPIOF_BASE (APB2PERIPH_BASE + 0x1C00)

#define GPIOG_BASE (APB2PERIPH_BASE + 0x2000)#define RCC_BASE (AHBPERIPH_BASE + 0x1000)#define GPIOA ((GPIO_TypeDef *) GPIOA_BASE)

#define GPIOB ((GPIO_TypeDef *) GPIOB_BASE)#define GPIOC ((GPIO_TypeDef *) GPIOC_BASE)#define GPIOD ((GPIO_TypeDef *) GPIOD_BASE)

#define GPIOE ((GPIO_TypeDef *) GPIOE_BASE)#define GPIOF ((GPIO_TypeDef *) GPIOF_BASE)

#define GPIOG ((GPIO_TypeDef *) GPIOG_BASE)#define RCC ((RCC_TypeDef *) RCC_BASE)#define RCC_APB2ENR *(volatile unsigned long *)0x40021018

#define GPIOB_CRL *(volatile unsigned long *)0x40010C00#define GPIOB_ODR *(volatile unsigned long *)0x40010C0Cint main(void)

{

// 开启端口B 的时钟

RCC-》APB2ENR |= 1《《3;

// 配置PB0 为通用推挽输出模式,速率为2M

GPIOB-》CRL = (2《《0) | (0《《2);

// PB0 输出低电平,点亮LED

GPIOB-》ODR = 0《《0;

}

void SystemInit(void)

{

}

第二层级变化:

①、定义一个外设(GPIO)寄存器结构体,结构体的成员包含该外设的所有寄存器,成员的排列顺序跟寄存器偏移地址一样,成员的数据类型跟寄存器的一样。

②外设内存映射,即把地址跟外设建立起一一对应的关系。

③外设声明,即把外设的名字定义成一个外设寄存器结构体类型的指针。

④通过结构体操作寄存器,实现点亮LED。

第三层级:基地址宏定义+结构体封装+“位封装”(每一位的对应字节封装)

上面我们在控制GPIO输出内容的时候控制的是ODR(Output data register)寄存器,ODR是一个16位的寄存器,必须以字的形式控制其实我们还可以控制BSRR和BRR这两个寄存器来控制IO的电平,下面我们简单介绍下BRR寄存器的功能,BSRR自行看手册研究。

位清除寄存器BRR只能实现位清0操作,是一个32位寄存器,低16位有效,写0没影响,写1清0。现在我们要使PB0输出低电平,点亮LED,则只要往BRR的BR0位写1即可,其他位为0,代码如下:

GPIOB-》BRR = 0X0001;

这时PB0就输出了低电平,LED就被点亮了。

如果要PB2输出低电平,则是:

GPIOB-》BRR = 0X0004;

如果要PB3/4/5/6。。。。。。这些IO输出低电平呢?

道理是一样的,只要往BRR的相应位置赋不同的值即可。因为BRR是一个16位的寄存器,位数比较多,赋值的时候容易出错,而且从赋值的16进制数字我们很难清楚的知道控制的是哪个IO。

这时,我们是否可以把BRR的每个位置1都用宏定义来实现,如GPIO_Pin_0就表示0X0001,GPIO_Pin_2就表示0X0004。只要我们定义一次,以后都可以使用,而且还见名知意。“位封装”(每一位的对应字节封装) 代码如下:

#define GPIO_Pin_0 ((uint16_t)0x0001)

/*!

《 Pin 0 selected */#define GPIO_Pin_1 ((uint16_t)0x0002)

/*!《 Pin 1 selected */#define GPIO_Pin_2 ((uint16_t)0x0004) /*!《 Pin 2 selected */#define GPIO_Pin_3 ((uint16_t)0x0008)

/*!《 Pin 3 selected */#define GPIO_Pin_4 ((uint16_t)0x0010)

/*!《 Pin 4 selected */#define GPIO_Pin_5 ((uint16_t)0x0020) /*!《 Pin 5 selected */#define GPIO_Pin_6 ((uint16_t)0x0040)

/*!《 Pin 6 selected */#define GPIO_Pin_7 ((uint16_t)0x0080)

/*!《 Pin 7 selected */#define GPIO_Pin_8 ((uint16_t)0x0100)

/*!《 Pin 8 selected */#define GPIO_Pin_9 ((uint16_t)0x0200) /*!《 Pin 9 selected */#define GPIO_Pin_10 ((uint16_t)0x0400)

/*!《 Pin 10 selected */#define GPIO_Pin_11 ((uint16_t)0x0800)

/*!《 Pin 11 selected */#define GPIO_Pin_12 ((uint16_t)0x1000)

/*!《 Pin 12 selected */#define GPIO_Pin_13 ((uint16_t)0x2000) /*!《 Pin 13 selected */#define GPIO_Pin_14 ((uint16_t)0x4000)

/*!《 Pin 14 selected */#define GPIO_Pin_15 ((uint16_t)0x8000) /*!《 Pin 15 selected */#define GPIO_Pin_All ((uint16_t)0xFFFF)

/*!《 All pins selected */

这时PB0就输出了低电平的代码就变成了:

GPIOB-》BRR = GPIO_Pin_0;

(如果同时让PB0/PB15输出低电平,用或运算,代码:

GPIOB-》BRR = GPIO_Pin_0|GPIO_Pin_15;

为了不使main函数看起来冗余,上述库封装 的代码不应该放在main里面,因为其是跟GPIO相关的,我们可以把这些宏放在一个单独的头文件里面。

在工程目录下新建stm32f10x_gpio.h,把封装代码放里面,然后把这个文件添加到工程里面。这时我们只需要在main.c里面包含这个头文件即可。

第四层级:基地址宏定义+结构体封装+“位封装”+函数封装

我们点亮LED的时候,控制的是PB0这个IO,如果LED接到的是其他IO,我们就需要把GPIOB修改成其他的端口,其实这样修改起来也很快很方便。

但是为了提高程序的可读性和可移植性,我们是否可以编写一个专门的函数用来复位GPIO的某个位,这个函数有两个形参,一个是GPIOX(X=A.。.G),另外一个是GPIO_Pin(0.。.15),函数的主体则是根据形参GPIOX 和GPIO_Pin来控制BRR寄存器,代码如下:

void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

GPIOx-》BRR = GPIO_Pin;

}

这时,PB0输出低电平,点亮LED的代码就变成了:

GPIO_ResetBits(GPIOB,GPIO_Pin_0);

同理, 我们可以控制BSRR这个寄存器来实现关闭LED,代码如下:

// GPIO 端口置位函数void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

{

GPIOx-》BSRR = GPIO_Pin;

}

这时,PB0输出高电平,关闭LED的代码就变成了:

GPIO_SetBits(GPIOB,GPIO_Pin_0);

同样,因为这个函数是控制GPIO的函数,我们可以新建一个专门的文件来放跟gpio有关的函数。

在工程目录下新建stm32f10x_gpio.c,把GPIO相关的函数放里面。这时我们是否发现刚刚新建了一个头文件stm32f10x_gpio.h,这两个文件存放的都是跟外设GPIO相关的。

C文件里面的函数会用到h头文件里面的定义,这两个文件是相辅相成的,故我们在stm32f10x_gpio.c 文件中也包含stm32f10x_gpio.h这个头文件。别忘了把stm32f10x.h这个头文件也包含进去,因为有关寄存器的所有定义都在这个头文件里面。

如果我们写其他外设的函数,我们也应该跟GPIO一样,新建两个文件专门来存函数,比如RCC这个外设我们可以新建stm32f10x_rcc.c和stm32f10x_rcc.h。其他外依葫芦画瓢即可。

(5)实例编写

以上,是对库封住过程的概述,下面我们正在地使用库函数编写LED程序

①管理库的头文件

当我们开始调用库函数写代码的时候,有些库我们不需要,在编译的时候可以不编译,可以通过一个总的头文件stm32f10x_conf.h来控制,该头文件主要代码如下:

//#include “stm32f10x_adc.h”//#include “stm32f10x_bkp.h”//#include “stm32f10x_can.h”//

#include “stm32f10x_cec.h”//#include “stm32f10x_crc.h”//#include “stm32f10x_dac.h”//

#include “stm32f10x_dbgmcu.h”//#include “stm32f10x_dma.h”//

#include “stm32f10x_exti.h”//#include “stm32f10x_flash.h”//

#include “stm32f10x_fsmc.h”#include “stm32f10x_gpio.h”//

#include “stm32f10x_i2c.h”//#include “stm32f10x_iwdg.h”//#include “stm32f10x_pwr.h”

#include “stm32f10x_rcc.h”//#include “stm32f10x_rtc.h”//

#include “stm32f10x_sdio.h”//#include “stm32f10x_spi.h”//#include “stm32f10x_tim.h”/

/#include “stm32f10x_usart.h”//

#include “stm32f10x_wwdg.h”//#include “misc.h”

这里面包含了全部外设的头文件,点亮一个LED我们只需要RCC和GPIO 这两个外设的库函数即可,其中RCC控制的是时钟,GPIO控制的具体的IO口。所以其他外设库函数的头文件我们注释掉,当我们需要的时候就把相应头文件的注释去掉即可。

stm32f10x_conf.h这个头文件在stm32f10x.h这个头文件的最后面被包含,在第8296行:

#ifdef USE_STDPERIPH_DRIVER#include “stm32f10x_conf.h”#endif

代码的意思是,如果定义了USE_STDPERIPH_DRIVER这个宏的话,就包含stm32f10x_conf.h这个头文件。

我们在新建工程的时候,在魔术棒选项卡C/C++中,我们定义了USE_STDPERIPH_DRIVER 这个宏,所以stm32f10x_conf.h 这个头文件就被stm32f10x.h包含了,我们在写程序的时候只需要调用一个头文件:stm32f10x.h即可。

②编写LED初始化函数

经过寄存器点亮LED的操作,我们知道操作一个GPIO输出的编程要点大概如下:

1、开启GPIO的端口时钟

2、选择要具体控制的IO口,即pin

3、选择IO口输出的速率,即speed

4、选择IO口输出的模式,即mode

5、输出高/低电平

STM32的时钟功能非常丰富,配置灵活,为了降低功耗,每个外设的时钟都可以独自的关闭和开启。STM32中跟时钟有关的功能都由RCC这个外设控制,RCC中有三个寄存器控制着所以外设时钟的开启和关闭:RCC_APHENR、RCC_APB2ENR和RCC_APB1ENR,AHB、APB2和APB1代表着三条总线,所有的外设都是挂载到这三条总线上,GPIO属于高速的外设,挂载到APB2总线上,所以其时钟有RCC_APB2ENR控制。

GPIO 时钟控制

固件库函数:RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE)函数的

原型为:

void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph,

FunctionalState NewState)

{

/* Check the parameters */

assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));

assert_param(IS_FUNCTIONAL_STATE(NewState));

if (NewState != DISABLE)

{

RCC-》APB2ENR |= RCC_APB2Periph;

}

else

{

RCC-》APB2ENR &= ~RCC_APB2Periph;

}

}

当程序编译一次之后,把光标定位到函数/变量/宏定义处,按键盘的F12或鼠标右键的Go to definition of,就可以找到原型。固件库的底层操作的就是RCC外设的APB2ENR这个寄存器,宏RCC_APB2Periph_GPIOB的原型是:0x00000008,即(1《《3),还原成存器操作就是:RCC-》APB2ENR |= 1《《《3。相比固件库操作,寄存器操作的代码可读性就很差,只有才查阅寄存器配置才知道具体代码的功能,而固件库操作恰好相反,见名知意。

GPIO 端口配置

GPIO的pin,速度,模式,都由GPIO的端口配置寄存器来控制,其中IO0~IO7由端口配置低寄存器CRL控制,IO8~IO15由端口配置高寄存器CRH配置。固件库把端口配置的pin,速度和模式封装成一个结构体:

typedef struct

{

uint16_t GPIO_Pin;

GPIOSpeed_TypeDef GPIO_Speed;

GPIOMode_TypeDef GPIO_Mode;

} GPIO_InitTypeDef;

pin可以是GPIO_Pin_0~GPIO_Pin_15或者是GPIO_Pin_All,这些都是库预先定义好的宏。speed也被封装成一个结构体:

typedef enum

{

GPIO_Speed_10MHz = 1,

GPIO_Speed_2MHz,

GPIO_Speed_50MHz

} GPIOSpeed_TypeDef;

速度可以是10M,2M或者50M,这个由端口配置寄存器的MODE位控制,速度是针对IO口输出的时候而言,在输入的时候可以不用设置。mode也被封装成一个结构体:

typedef enum

{

GPIO_Mode_AIN = 0x0, // 模拟输入

GPIO_Mode_IN_FLOATING = 0x04, // 浮空输入(复位后的状态)

GPIO_Mode_IPD = 0x28, // 下拉输入

GPIO_Mode_IPU = 0x48, // 上拉输入

GPIO_Mode_Out_OD = 0x14, // 通用开漏输出

GPIO_Mode_Out_PP = 0x10, // 通用推挽输出

GPIO_Mode_AF_OD = 0x1C, // 复用开漏输出

GPIO_Mode_AF_PP = 0x18 // 复用推挽输出

} GPIOMode_TypeDef;

IO口的模式有8种,输入输出各4种,由端口配置寄存器的CNF配置。平时用的最多的就是通用推挽输出,可以输出高低电平,驱动能力大,一般用于接数字器件。

最终用固件库实现就变成这样:

// 定义一个GPIO_InitTypeDef 类型的结构体

GPIO_InitTypeDef GPIO_InitStructure;

// 选择要控制的IO 口

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;

// 设置引脚为推挽输出

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

// 设置引脚速率为50MHz

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

/*调用库函数,初始化GPIOB0*/

GPIO_Init(GPIOB, &GPIO_InitStructure);

倘若同一端口下不同引脚有不同的模式配置,每次对每个引脚配置完成后都要调用GPIO初始化函数,代码如下:

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15 ;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //上拉输入

GPIO_Init(GPIOB, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 ;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

GPIO_Init(GPIOB, &GPIO_InitStructure);

GPIO 输出控制

GPIO输出控制,可以通过端口数据输出寄存器ODR、端口位设置/清除寄存器BSRR和端口位清除寄存器BRR这三个来控制。端口输出寄存器ODR是一个32位的寄存器,低16位有效,对应着IO0~IO15,只能以字的形式操作,一般使用寄存器操作。

// PB0 输出高电平,点亮LED

GPIOB-》ODR = 1《《0;

端口位清除寄存器BRR是一个32位的寄存器,低十六位有效,对应着IO0~IO15,只能以字的形式操作,可以单独对某一个位操作,写1清0。

// PB0 输出低电平,点亮LED

GPIO_ResetBits(GPIOB, GPIO_Pin_0);

BSRR是一个32位的寄存器,低16位用于置位,写1有效,高16位用于复位,写1有效,相当于BRR寄存器。高16位我们一般不用,而是操作BRR这个寄存器,所以BSRR这个寄存器一般用来置位操作。

// PB0 输出高电平,熄灭LED

GPIO_SetBits(GPIOB, GPIO_Pin_0);

综上:固件库LED GPIO初始化函数

void LED_GPIO_Config(void)

{

// 定义一个GPIO_InitTypeDef 类型的结构体

GPIO_InitTypeDef GPIO_InitStructure;

// 开启GPIOB 的时钟

RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE);

// 选择要控制的IO 口

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;

// 设置引脚为推挽输出

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

// 设置引脚速率为50MHz

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

/*调用库函数,初始化GPIOB0*/

GPIO_Init(GPIOB, &GPIO_InitStructure);

// 关闭LED

GPIO_SetBits(GPIOB, GPIO_Pin_0);

}

主函数

#include “stm32f10x.h”void SOFT_Delay(__IO uint32_t nCount);

void LED_GPIO_Config(void);

int main(void)

{

// 程序来到main 函数之前,启动文件:statup_stm32f10x_hd.s 已经调用

// SystemInit()函数把系统时钟初始化成72MHZ

// SystemInit()在system_stm32f10x.c 中定义

// 如果用户想修改系统时钟,可自行编写程序修改

LED_GPIO_Config();

while ( 1 )

{

// 点亮LED

GPIO_ResetBits(GPIOB, GPIO_Pin_0);

Time_Delay(0x0FFFFF);

// 熄灭LED

GPIO_SetBits(GPIOB, GPIO_Pin_0);

Time_Delay(0x0FFFFF);

}

}

// 简陋的软件延时函数void Time_Delay(volatile uint32_t Count)

{

for (; Count != 0; Count--);

}

注意void Time_Delay(volatile uint32_t Count)只是一个简陋的软件延时函数,如果小伙伴们有兴趣可以看一看MultiTimer,它是一个软件定时器扩展模块,可无限扩展所需的定时器任务,取代传统的标志位判断方式, 更优雅更便捷地管理程序的时间触发时序。

责任编辑:haq

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分