半导体异质结构的应用知识

材料

0人已加入

描述

半导体异质结构的应用知识


(图a、b) 串珠状碳纳米管-半导体纳米球异质结构;(图c) 利用单根异质结构制作的Schottky二极管

(1)发光组件(light emitting devices, LED):

因为半导体异质结构能将电子与电洞局限在中间层内,电子与电洞的复合率因而增加,所以发光的效率较大;同时改变量子井的宽度亦可以控制发光的频率,所以现今的半导体发光组件,大都是由异质结构所组成的。半导体异质结构发光组件,相较其它发光组件,具有高效率、省电、耐用等优点,因此广泛应用于剎车灯、交通号志灯、户外展示灯等。值得一提的是在1993年,日本的科学家研发出蓝色光的半导体组件,使得光的三原色红、绿、蓝,皆可用半导体制作,因此各种颜色都可用半导体发光组件得到,难怪大家预测家庭用的灯炮、日光灯,即将被半导体发光组件所取代。

(2)雷射二极管:

半导体雷射二极管的基本构造,与上述的发光组件极为类似,只不过是雷射二极管必须考虑到受激发光(stimulated emission)与共振的条件。使用半导体异质结构,因电子与电洞很容易掉到中间层,因此载子数目反转(population inversion)较易达成,这是具有受激发光的必要条件,而且电子与电洞因被局限在中间层内,其结合率较大。此外,两旁夹层的折射率与中间层不同,因而可以将光局限在中间层,致使光不会流失,而增加雷射强度,是故利异质结构制作雷射,有很大的优点。第一个室温且连续发射的半导体异质结构雷射,是在1970年由阿法洛夫领导的研究群所制作出来的,而克拉姆则在1963年发展了有关半导体异质结构雷射的原理。半导体雷射二极管的应用范围亦相当广泛,如雷射唱盘(如图4所示),高速光纤通讯、激光打印机、雷射笔等。

半导体 

(3)异质结构双极晶体管:(heterojunction bipolar transistor, HBT) 在半导体异质结构中,中间层有较低的能带,因此电子很容易就由旁边的夹层注入,是故在晶体管中由射极经过基极到集极的电流,就可以大为提高,晶体管的放大倍率也为之增加;同时基极的厚度可以减小,其掺杂浓度可以增加,因而反应速率变大,所以异质结构得以制作快速晶体管。利用半导体异质结构作成晶体管的建议与其特性分析,是由克接拉姆在1957提出的。半导体异质结构双极晶体管因具有快速、高放大倍率的优点,因而广泛应用于人造卫星通讯或是行动电话等。

(4)高速电子迁移率晶体管(high electron mobility transistor, HEMT)

高速电子迁移率晶体管,就是利用半导体异质结构中杂质与电子在空间能被分隔的优点,因此电子得以有很高的迁移率。在此结构中,改变闸极(gate)的电压,就可以控制由源极(source)到泄极(drain)的电流,而达到放大的目的。因该组件具有很高的向应频率(600GHz)且低噪声的优点,因此广泛应用于无限与太空通讯(如图5所示),以及天文观测。

 半导体

(5)其它应用:

半导体异质结构除了用于上述组件外,亦大量使用于其它光电组件,如光侦测器、太阳电池、标准电阻或是光电调制器...等。又因为长晶技术的进展,单层原子厚度的薄膜已能控制,因此半导体异质结构提供了高质量的低维度系统,让科学家能满足探求低维度现象的要求。除了在二度空间观测到量子与分数量子霍尔效应外,科学家已进一步在探求异质结构中的一维与零维的电子行为,预期将来还会陆续有新奇的现象被发掘,也会有更多新颖的异质结构组件出现。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分