主板芯片组
上面的笔算过程可叙述如下:
1. 判断x是否小于y?现在x<y,故商的整数位商“0”,x的低位补0,得余数r0。
2. 比较r0和2-1y,因r0>2-1y,表示够减,小数点后第一位商“1”,作r0-2-1y,得余数r1。
3. 比较r1和2-2y,因r1>2-2y,表示够减,小数点后第二位商“1”,作r1-2-2y,得余数r2。
4. 比较r2和2-3y,因r2<2-3y,不够减,小数点后第三位商“0”,不作减法,得余数r3(=r2)。
5. 比较r3和2-4y,因r3>2-4y,表示够减,小数点后第四2位商“1”,作r3-2-4y,得余数r4,共求四位商,至此除法完毕。
在计算机中,小数点是固定的,不能简单地采用手算的办法。为便于机器操作,使“除数右移”和“右移上商”的操作统一起来。
事实上,机器的运算过程和人毕竟不同,人会心算,一看就知道够不够减。但机器却不会心算,必须先作减法,若余数为正,才知道够减;若余数为负,才知道不够减。不够减时必须恢复原来的余数,以便再继续往下运算。这种方法称为恢复余数法。要恢复原来的余数,只要当前的余数加上除数即可。但由于要恢复余数,使除法进行过程的步数不固定,因此控制比较复杂。实际中常用不恢复余数法,又称加减交替法。其特点是运算过程中如出现不够减,则不必恢复余数,根据余数符号,可以继续往下运算,因此步数固定,控制简单。
早期计算机中,为了简化结构,硬件除法器的设计采用串行的1位除法方案。即多次执行“减法—移位”操作来实现,并使用计数器来控制移位次数。由于串行除法器速度太慢,目前已被淘汰。
得x÷y的商q=0.1101,余数为r=0.00000001。
全部0条评论
快来发表一下你的评论吧 !