浮点运算与浮点运算器

台式机

8人已加入

描述

浮点运算与浮点运算器

浮点加减法的运算步骤
设两个浮点数 X=Mx※2Ex Y=My※2Ey
实现X±Y要用如下5步完成:
①对阶操作:小阶向大阶看齐
②进行尾数加减运算
③规格化处理:尾数进行运算的结果必须变成规格化的浮点数,对于双符号位的补码尾数来说,就必须是
001×××…×× 或110×××…××的形式
若不符合上述形式要进行左规或右规处理。

④舍入操作:在执行对阶或右规操作时常用“0”舍“1”入法将右移出去的尾数数值进行舍入,以确保精度。
⑤判结果的正确性:即检查阶码是否溢出
若阶码下溢(移码表示是00…0),要置结果为机器0;
若阶码上溢(超过了阶码表示的最大值)置溢出标志。

例题:假定X=0 .0110011*2 11 ,Y=0.1101101*2 -10 (此处的数均为二进制) ?? 计算X+Y;
解:[X] 浮 : 0 1 010 1100110
[Y] 浮 : 0 0 110 1101101
符号位 阶码 尾数

第一步:求阶差: │ΔE│=|1010-0110|=0100
第二步:对阶:Y的阶码小, Y的尾数右移4位
[Y] 浮 变为 0 1 010 0000110 1101暂时保存
第三步:尾数相加,采用双符号位的补码运算
00 1100110
+00 0000110
00 1101100
第四步规格化:满足规格化要求
第五步:舍入处理,采用0舍1入法处理
故最终运算结果的浮点数格式为: 0 1 010 1101101,
即X+Y=+0. 1101101*2 10

2、浮点乘除法的运算步骤
①阶码运算:阶码求和(乘法)或阶码求差(除法)
即 [Ex+Ey]移= [Ex]移+ [Ey]补
[Ex-Ey]移= [Ex]移+ [-Ey]补

②浮点数的尾数处理:浮点数中尾数乘除法运算结果要进行舍入处理
例题:X=0 .0110011*2 11 ,Y=0.1101101*2 -10
求X※Y
解:[X] 浮 : 0 1 010 1100110
[Y] 浮 : 0 0 110 1101101
第一步:阶码相加
[Ex+Ey]移=[Ex]移+[Ey]补=1 010+1 110=1 000
1 000为移码表示的0
第二步:原码尾数相乘的结果为:
0 10101101101110
第三步:规格化处理:已满足规格化要求,不需左规,尾数不变,阶码不变。
第四步:舍入处理:按舍入规则,加1进行修正
所以 X※Y= 0.1010111※2 +000


 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分