小型太阳能光伏电源的串联以及并联线性稳压

电源/新能源

3543人已加入

描述

太阳能光伏阵列似乎每天都变得更便宜、更高效,这使得它们在可再生和/或远程供电应用中越来越实用。尽管如此,任何给定阵列产生的电压随负载、入射光强度和温度而显着变化,因此通常需要某种形式的调节。

阵列性能可以显着受益于最大功率点跟踪 (MPPT) 和开关模式调节,如早期设计理念所示:太阳能阵列控制器不需要乘法器来最大化功率

但对于小型阵列,MPPT 和开关模式电路的额外复杂性似乎不合理,因此线性调节成为更简单和更好的选择。本设计理念针对此类系统,重点关注串联稳压器拓扑与并联稳压器拓扑的相对优势。

用您独特的设计让工程界惊叹: 设计理念提交指南

让我们从一个假设的小型太阳能电池阵列开始,该阵列针对 12W 输出(在完全阳光直射下 ~1kW/m 2)、1A 和 12V、20% 的光电转换效率进行了优化,因此标称面积为 ~0.06m 2 = ~ 100 英寸2 . 然后添加线性调节电路,以在负载电流从 0 到 1A 变化时保持恒定的 12V 输出。 

图 1说明了一个合适的串联稳压器,而图 2是一个类似的并联拓扑。为便于比较并联稳压与串联稳压的优势,两种稳压器均采用基于古老的 LM10 组合基准 + 运算放大器的相同检测/控制电路。

线性稳压器

图 1适用于小型太阳能电池阵列的串联线性稳压器。

线性稳压器

图 2适用于小型太阳能电池阵列的并联线性稳压器。

如图所示,LM10 200mV 内部基准(引脚 1 + 8)通过提供输入偏置电流补偿的 R1 = R2R3/(R2 + R3) 驱动运算放大器反相输入(引脚 2),而同相输入(引脚3) 通过 60:1 R2:R3 分压器连接到 Vout (Vsetpoint = 200mV(R3/R2 + 1))。因此,运算放大器输出(引脚 6)将在

Vout < Vsetpoint 并且当 Vout > Vsetpoint 时为正。 

在图 1(串联稳压器)中,引脚 6 通过限流 R4 连接到 D45 PNP 传输功率晶体管的基极,当 Vout < Vsetpoint 时增加驱动和负载电流,当 Vout > Vsetpoint 时减小它们。在图 2(并联稳压器)中,引脚 6 驱动 D44 NPN 并联晶体管的基极,当 Vout > Vsetpoint 时将更多的阵列电流路由到地,而在 Vout > Vsetpoint 时则更少。 

那么,哪种类型的调节(并联或串联)更好,何时以及为什么?

为了回答这个一般性问题,将考虑三类特定的电路性能:

稳压器效率(在峰值需求时提供给负载的阵列功率的最大部分)

热管理挑战(主要由功率晶体管散热器所需的热容量决定,反过来又由最大晶体管功耗决定)

调节类型对太阳能电池阵列温度的影响,从而对阵列转换效率的影响

调节器效率

当 D45 传输晶体管导通并接近饱和时,串联拓扑的满载 (1A) 效率受三个因素的限制:

LM10 和 R2R3 分压器的电流消耗 = 312uA(典型值)

D45 的基本驱动@Ic = 1A = 10mA(典型值)

D45 的饱和压降 @Ic = 1A = 100mV(typ)

将这些损失相加,估计典型效率因子为 98%。

相比之下,在分流拓扑中,D44 功率晶体管在满载时完全关闭,阵列和输出之间的连接是直接的,只留下上述三个因素中的一个来竞争输出电流:#1——312uA LM10 电流。这导致近乎完美的 99.97% 效率。

结论:就效率而言,串联非常好,但并联(实际上)是完美的。请注意,该结果与串联稳压效率通常高于并联稳压效率的普遍预期不同。

热管理挑战

D45 系列传输晶体管的最大热耗散约为 1.33W,发生在 0.66A 负载电流时,可由小型夹式散热器容纳。的D44并联晶体管的最大功耗,相比之下,发生在零负载电流和大得多:〜4.5W,需要相当大和笨重的挤压片,以限制可接受的温度上升(〜40 ö和自然对流的条件下C)辐射。

根据这个标准,串联调节是明显的赢家,(酷)因子大于 3。

调节方式对太阳能电池阵列温度的影响

太阳能电池阵列吸收的总太阳能只能通过两种方式: 1. 转换为电能输送到连接的电路;或 2. 阵列散发的热量。热力学第一定律规定后两者之和必须始终完全等于前者。因此,连接的负载接受的电力越少,阵列必须以热量的形式释放的电力就越多,这不可避免地会增加阵列的温度。 

串联调节会导致大部分未被负载接受的功率被阵列耗散(记住 D45 保持多冷),而并联调节则耗散 D44 晶体管和 R4 中被拒绝的功率。因此,在部分负荷,有20%的效率分流调节面板运行冷却器比串联调节面板,由多达10 ö C.太阳能阵列转换效率0.3%与温度的上升下降到0.4%/ ø C,使得在某些情况下,并联调节面板的效率可能比串联调节面板高 3% 或 4%。
       fqj

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分