需要获取更好阅读体验的同学,请访问我专门设立的站点查看,地址:http://rtos.100ask.net/
本教程连载中,篇章会比较多,为方便同学们阅读,点击这里可以查看文章的 目录列表,目录列表页面地址:https://blog.csdn.net/thisway_diy/article/details/121399484
前面介绍的队列(queue)可以用于传输数据:在任务之间、任务和中断之间。
有时候我们只需要传递状态,并不需要传递具体的信息,比如:
在这种情况下我们可以使用信号量(semaphore),它更节省内存。
本章涉及如下内容:
信号量这个名字很恰当:
计数型信号量的典型场景是:
信号量的"give"、"take"双方并不需要相同,可以用于生产者-消费者场合:
二进制信号量跟计数型的唯一差别,就是计数值的最大值被限定为1。
差异列表如下:
队列 | 信号量 |
---|---|
可以容纳多个数据, 创建队列时有2部分内存: 队列结构体、存储数据的空间 |
只有计数值,无法容纳其他数据。 创建信号量时,只需要分配信号量结构体 |
生产者:没有空间存入数据时可以阻塞 | 生产者:用于不阻塞,计数值已经达到最大时返回失败 |
消费者:没有数据时可以阻塞 | 消费者:没有资源时可以阻塞 |
信号量的计数值都有限制:限定了最大值。如果最大值被限定为1,那么它就是二进制信号量;如果最大值不是1,它就是计数型信号量。
差别列表如下:
二进制信号量 | 技术型信号量 |
---|---|
被创建时初始值为0 | 被创建时初始值可以设定 |
其他操作是一样的 | 其他操作是一样的 |
使用信号量时,先创建、然后去添加资源、获得资源。使用句柄来表示一个信号量。
使用信号量之前,要先创建,得到一个句柄;使用信号量时,要使用句柄来表明使用哪个信号量。
对于二进制信号量、计数型信号量,它们的创建函数不一样:
二进制信号量 | 计数型信号量 | |
---|---|---|
动态创建 |
xSemaphoreCreateBinary 计数值初始值为0 |
xSemaphoreCreateCounting |
vSemaphoreCreateBinary(过时了) 计数值初始值为1 |
||
静态创建 | xSemaphoreCreateBinaryStatic | xSemaphoreCreateCountingStatic |
创建二进制信号量的函数原型如下:
/* 创建一个二进制信号量,返回它的句柄。
* 此函数内部会分配信号量结构体
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateBinary( void );
/* 创建一个二进制信号量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer );
创建计数型信号量的函数原型如下:
/* 创建一个计数型信号量,返回它的句柄。
* 此函数内部会分配信号量结构体
* uxMaxCount: 最大计数值
* uxInitialCount: 初始计数值
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t uxMaxCount, UBaseType_t uxInitialCount);
/* 创建一个计数型信号量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* uxMaxCount: 最大计数值
* uxInitialCount: 初始计数值
* pxSemaphoreBuffer: StaticSemaphore_t结构体指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount,
UBaseType_t uxInitialCount,
StaticSemaphore_t *pxSemaphoreBuffer );
对于动态创建的信号量,不再需要它们时,可以删除它们以回收内存。
vSemaphoreDelete可以用来删除二进制信号量、计数型信号量,函数原型如下:
/*
* xSemaphore: 信号量句柄,你要删除哪个信号量
*/
void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );
二进制信号量、计数型信号量的give、take操作函数是一样的。这些函数也分为2个版本:给任务使用,给ISR使用。列表如下:
在任务中使用 | 在ISR中使用 | |
---|---|---|
give | xSemaphoreGive | xSemaphoreGiveFromISR |
take | xSemaphoreTake | xSemaphoreTakeFromISR |
xSemaphoreGive的函数原型如下:
BaseType_t xSemaphoreGive( SemaphoreHandle_t xSemaphore );
xSemaphoreGive函数的参数与返回值列表如下:
参数 | 说明 |
---|---|
xSemaphore | 信号量句柄,释放哪个信号量 |
返回值 |
pdTRUE表示成功, 如果二进制信号量的计数值已经是1,再次调用此函数则返回失败; 如果计数型信号量的计数值已经是最大值,再次调用此函数则返回失败 |
pxHigherPriorityTaskWoken的函数原型如下:
BaseType_t xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);
xSemaphoreGiveFromISR函数的参数与返回值列表如下:
参数 | 说明 |
---|---|
xSemaphore | 信号量句柄,释放哪个信号量 |
pxHigherPriorityTaskWoken |
如果释放信号量导致更高优先级的任务变为了就绪态, 则*pxHigherPriorityTaskWoken = pdTRUE |
返回值 |
pdTRUE表示成功, 如果二进制信号量的计数值已经是1,再次调用此函数则返回失败; 如果计数型信号量的计数值已经是最大值,再次调用此函数则返回失败 |
xSemaphoreTake的函数原型如下:
BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait
);
xSemaphoreTake函数的参数与返回值列表如下:
参数 | 说明 |
---|---|
xSemaphore | 信号量句柄,获取哪个信号量 |
xTicksToWait |
如果无法马上获得信号量,阻塞一会: 0:不阻塞,马上返回 portMAX_DELAY: 一直阻塞直到成功 其他值: 阻塞的Tick个数,可以使用 pdMS_TO_TICKS() 来指定阻塞时间为若干ms |
返回值 | pdTRUE表示成功 |
xSemaphoreTakeFromISR的函数原型如下:
BaseType_t xSemaphoreTakeFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);
xSemaphoreTakeFromISR函数的参数与返回值列表如下:
参数 | 说明 |
---|---|
xSemaphore | 信号量句柄,获取哪个信号量 |
pxHigherPriorityTaskWoken |
如果获取信号量导致更高优先级的任务变为了就绪态, 则*pxHigherPriorityTaskWoken = pdTRUE |
返回值 | pdTRUE表示成功 |
本节代码为: FreeRTOS_12_semaphore_binary
。
main函数中创建了一个二进制信号量,然后创建2个任务:一个用于释放信号量,另一个用于获取信号量,代码如下:
/* 二进制信号量句柄 */
SemaphoreHandle_t xBinarySemaphore;
int main( void )
{
prvSetupHardware();
/* 创建二进制信号量 */
xBinarySemaphore = xSemaphoreCreateBinary( );
if( xBinarySemaphore != NULL )
{
/* 创建1个任务用于释放信号量
* 优先级为2
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 2, NULL );
/* 创建1个任务用于获取信号量
* 优先级为1
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建二进制信号量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务、接收任务的代码和执行流程如下:
运行结果如下图所示,即使发送任务连续释放多个信号量,也只能成功1次。释放、获得信号量是一一对应的。
本节代码为: FreeRTOS_13_semaphore_circle_buffer
。
在示例12中,发送任务发出3次"提醒",但是接收任务只接收到1次"提醒",其中2次"提醒"丢失了。
这种情况很常见,比如每接收到一个串口字符,串口中断程序就给任务发一次"提醒",假设收到多个字符、发出了多次"提醒"。当任务来处理时,它只能得到1次"提醒"。
你需要使用其他方法来防止数据丢失,比如:
在串口中断中,把数据放入缓冲区
在任务中,一次性把缓冲区中的数据都读出
简单地说,就是:你提醒了我多次,我太忙只响应你一次,但是我一次性拿走所有数据
main函数中创建了一个二进制信号量,然后创建2个任务:一个用于释放信号量,另一个用于获取信号量,代码如下:
/* 二进制信号量句柄 */
SemaphoreHandle_t xBinarySemaphore;
int main( void )
{
prvSetupHardware();
/* 创建二进制信号量 */
xBinarySemaphore = xSemaphoreCreateBinary( );
if( xBinarySemaphore != NULL )
{
/* 创建1个任务用于释放信号量
* 优先级为2
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 2, NULL );
/* 创建1个任务用于获取信号量
* 优先级为1
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建二进制信号量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务、接收任务的代码和执行流程如下:
程序运行结果如下,数据未丢失:
本节代码为: FreeRTOS_14_semaphore_counting
。
使用计数型信号量时,可以多次释放信号量;当信号量的技术值达到最大时,再次释放信号量就会出错。
如果信号量计数值为n,就可以连续n次获取信号量,第(n+1)次获取信号量就会阻塞或失败。
main函数中创建了一个计数型信号量,最大计数值为3,初始值计数值为0;然后创建2个任务:一个用于释放信号量,另一个用于获取信号量,代码如下:
/* 计数型信号量句柄 */
SemaphoreHandle_t xCountingSemaphore;
int main( void )
{
prvSetupHardware();
/* 创建计数型信号量 */
xCountingSemaphore = xSemaphoreCreateCounting(3, 0);
if( xCountingSemaphore != NULL )
{
/* 创建1个任务用于释放信号量
* 优先级为2
*/
xTaskCreate( vSenderTask, "Sender", 1000, NULL, 2, NULL );
/* 创建1个任务用于获取信号量
* 优先级为1
*/
xTaskCreate( vReceiverTask, "Receiver", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建信号量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务、接收任务的代码和执行流程如下:
运行结果如下图所示:
全部0条评论
快来发表一下你的评论吧 !