需要获取更好阅读体验的同学,请访问我专门设立的站点查看,地址:http://rtos.100ask.net/
本教程连载中,篇章会比较多,为方便同学们阅读,点击这里可以查看文章的 目录列表,目录列表页面地址:https://blog.csdn.net/thisway_diy/article/details/121399484
怎么独享厕所?自己开门上锁,完事了自己开锁。
你当然可以进去后,让别人帮你把门:但是,命运就掌握在别人手上了。
使用队列、信号量,都可以实现互斥访问,以信号量为例:
这需要有2个前提:
可以看到,使用信号量确实也可以实现互斥访问,但是不完美。
使用互斥量可以解决这个问题,互斥量的名字取得很好:
它的核心在于:谁上锁,就只能由谁开锁。
很奇怪的是,FreeRTOS的互斥锁,并没有在代码上实现这点:
本章涉及如下内容:
为什么要实现互斥操作
怎么使用互斥量
互斥量导致的优先级反转、优先级继承
在多任务系统中,任务A正在使用某个资源,还没用完的情况下任务B也来使用的话,就可能导致问题。
比如对于串口,任务A正使用它来打印,在打印过程中任务B也来打印,客户看到的结果就是A、B的信息混杂在一起。
这种现象很常见:
访问外设:刚举的串口例子
读、修改、写操作导致的问题
对于同一个变量,比如int a
,如果有两个任务同时写它就有可能导致问题。
对于变量的修改,C代码只有一条语句,比如:a=a+8;
,它的内部实现分为3步:读出原值、修改、写入。
我们想让任务A、B都执行add_a函数,a的最终结果是1+8+8=17
。
假设任务A运行完代码①,在执行代码②之前被任务B抢占了:现在任务A的R0等于1。
任务B执行完add_a函数,a等于9。
任务A继续运行,在代码②处R0仍然是被抢占前的数值1,执行完②③的代码,a等于9,这跟预期的17不符合。
对变量的非原子化访问
修改变量、设置结构体、在16位的机器上写32位的变量,这些操作都是非原子的。也就是它们的操作过程都可能被打断,如果被打断的过程有其他任务来操作这些变量,就可能导致冲突。
函数重入
“可重入的函数"是指:多个任务同时调用它、任务和中断同时调用它,函数的运行也是安全的。可重入的函数也被称为"线程安全”(thread safe)。
每个任务都维持自己的栈、自己的CPU寄存器,如果一个函数只使用局部变量,那么它就是线程安全的。
函数中一旦使用了全局变量、静态变量、其他外设,它就不是"可重入的",如果改函数正在被调用,就必须阻止其他任务、中断再次调用它。
上述问题的解决方法是:任务A访问这些全局变量、函数代码时,独占它,就是上个锁。这些全局变量、函数代码必须被独占地使用,它们被称为临界资源。
互斥量也被称为互斥锁,使用过程如下:
正常来说:在任务A占有互斥量的过程中,任务B、任务C等等,都无法释放互斥量。
但是FreeRTOS未实现这点:任务A占有互斥量的情况下,任务B也可释放互斥量。
互斥量是一种特殊的二进制信号量。
使用互斥量时,先创建、然后去获得、释放它。使用句柄来表示一个互斥量。
创建互斥量的函数有2种:动态分配内存,静态分配内存,函数原型如下:
/* 创建一个互斥量,返回它的句柄。
* 此函数内部会分配互斥量结构体
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateMutex( void );
/* 创建一个互斥量,返回它的句柄。
* 此函数无需动态分配内存,所以需要先有一个StaticSemaphore_t结构体,并传入它的指针
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer );
要想使用互斥量,需要在配置文件FreeRTOSConfig.h中定义:
#define configUSE_MUTEXES 1
要注意的是,互斥量不能在ISR中使用。
各类操作函数,比如删除、give/take,跟一般是信号量是一样的。
/*
* xSemaphore: 信号量句柄,你要删除哪个信号量, 互斥量也是一种信号量
*/
void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );
/* 释放 */
BaseType_t xSemaphoreGive( SemaphoreHandle_t xSemaphore );
/* 释放(ISR版本) */
BaseType_t xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);
/* 获得 */
BaseType_t xSemaphoreTake(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait
);
/* 获得(ISR版本) */
xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
);
本节代码为: FreeRTOS_15_mutex
。
使用互斥量时有如下特点:
本程序创建2个发送任务:故意发送大量的字符。可以做2个实验:
main函数代码如下:
/* 互斥量句柄 */
SemaphoreHandle_t xMutex;
int main( void )
{
prvSetupHardware();
/* 创建互斥量 */
xMutex = xSemaphoreCreateMutex( );
if( xMutex != NULL )
{
/* 创建2个任务: 都是打印
* 优先级相同
*/
xTaskCreate( vSenderTask, "Sender1", 1000, (void *)1, 1, NULL );
xTaskCreate( vSenderTask, "Sender2", 1000, (void *)2, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建互斥量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
发送任务的函数如下:
static void vSenderTask( void *pvParameters )
{
const TickType_t xTicksToWait = pdMS_TO_TICKS( 10UL );
int cnt = 0;
int task = (int)pvParameters;
int i;
char c;
/* 无限循环 */
for( ;; )
{
/* 获得互斥量: 上锁 */
xSemaphoreTake(xMutex, portMAX_DELAY);
printf("Task %d use UART count: %d, ", task, cnt++);
c = (task == 1 ) ? 'a' : 'A';
for (i = 0; i < 26; i++)
printf("%c", c + i);
printf("rn");
/* 释放互斥量: 开锁 */
xSemaphoreGive(xMutex);
vTaskDelay(xTicksToWait);
}
}
可以做两个实验:vSenderTask函数的for循环中xSemaphoreTake和xSemaphoreGive这2句代码保留、不保留
程序运行结果如下图所示:
互斥量、互斥锁,本来的概念确实是:谁上锁就得由谁解锁。
但是FreeRTOS并没有实现这点,只是要求程序员按照这样的惯例写代码。
本节代码为: FreeRTOS_16_mutex_who_give
。
main函数创建了2个任务:
代码如下:
int main( void )
{
prvSetupHardware();
/* 创建互斥量 */
xMutex = xSemaphoreCreateMutex( );
if( xMutex != NULL )
{
/* 创建2个任务: 一个上锁, 另一个自己监守自盗(开别人的锁自己用)
*/
xTaskCreate( vTakeTask, "Task1", 1000, NULL, 2, NULL );
xTaskCreate( vGiveAndTakeTask, "Task2", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建互斥量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
两个任务的代码和执行流程如下图所示:
可见,任务1上的锁,被任务2解开了。所以,FreeRTOS并没有实现"谁上锁就得由谁开锁"的功能。
程序运行结果如下图所示:
假设任务A、B都想使用串口,A优先级比较低:
如果涉及3个任务,可以让"优先级反转"的后果更加恶劣。
本节代码为: FreeRTOS_17_mutex_inversion
。
互斥量可以通过"优先级继承",可以很大程度解决"优先级反转"的问题,这也是FreeRTOS中互斥量和二级制信号量的差别。
本节程序使用二级制信号量来演示"优先级反转"的恶劣后果。
main函数创建了3个任务:LPTask/MPTask/HPTask(低/中/高优先级任务),代码如下:
/* 互斥量/二进制信号量句柄 */
SemaphoreHandle_t xLock;
int main( void )
{
prvSetupHardware();
/* 创建互斥量/二进制信号量 */
xLock = xSemaphoreCreateBinary( );
if( xLock != NULL )
{
/* 创建3个任务: LP,MP,HP(低/中/高优先级任务)
*/
xTaskCreate( vLPTask, "LPTask", 1000, NULL, 1, NULL );
xTaskCreate( vMPTask, "MPTask", 1000, NULL, 2, NULL );
xTaskCreate( vHPTask, "HPTask", 1000, NULL, 3, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建互斥量/二进制信号量 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
LPTask/MPTask/HPTask三个任务的代码和运行过程如下图所示:
总结:
程序运行的时序图如下:
本节代码为: FreeRTOS_18_mutex_inheritance
。
示例17的问题在于,LPTask低优先级任务获得了锁,但是它优先级太低而无法运行。
如果能提升LPTask任务的优先级,让它能尽快运行、释放锁,"优先级反转"的问题不就解决了吗?
把LPTask任务的优先级提升到什么水平?
优先级继承:
本节源码是在FreeRTOS_17_mutex_inversion
的代码上做了一些简单修改:
int main( void )
{
prvSetupHardware();
/* 创建互斥量/二进制信号量 */
//xLock = xSemaphoreCreateBinary( );
xLock = xSemaphoreCreateMutex( );
运行时序图如下图所示:
xSemaphoreTake(xLock, portMAX_DELAY);
,它的优先级被LPTask继承xSemaphoreGive(xLock);
,它的优先级恢复为原来值日常生活的死锁:我们只招有工作经验的人!我没有工作经验怎么办?那你就去找工作啊!
假设有2个互斥量M1、M2,2个任务A、B:
假设这样的场景:
怎么解决这类问题?可以使用递归锁(Recursive Mutexes),它的特性如下:
递归锁的函数根一般互斥量的函数名不一样,参数类型一样,列表如下:
递归锁 | 一般互斥量 | |
---|---|---|
创建 | xSemaphoreCreateRecursiveMutex | xSemaphoreCreateMutex |
获得 | xSemaphoreTakeRecursive | xSemaphoreTake |
释放 | xSemaphoreGiveRecursive | xSemaphoreGive |
函数原型如下:
/* 创建一个递归锁,返回它的句柄。
* 此函数内部会分配互斥量结构体
* 返回值: 返回句柄,非NULL表示成功
*/
SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void );
/* 释放 */
BaseType_t xSemaphoreGiveRecursive( SemaphoreHandle_t xSemaphore );
/* 获得 */
BaseType_t xSemaphoreTakeRecursive(
SemaphoreHandle_t xSemaphore,
TickType_t xTicksToWait
);
本节代码为: FreeRTOS_19_mutex_recursive
。
递归锁实现了:谁上锁就由谁解锁。
本程序从FreeRTOS_16_mutex_who_give
修改得来,它的main函数里创建了2个任务
main函数代码如下:
/* 递归锁句柄 */
SemaphoreHandle_t xMutex;
int main( void )
{
prvSetupHardware();
/* 创建递归锁 */
xMutex = xSemaphoreCreateRecursiveMutex( );
if( xMutex != NULL )
{
/* 创建2个任务: 一个上锁, 另一个自己监守自盗(看看能否开别人的锁自己用)
*/
xTaskCreate( vTakeTask, "Task1", 1000, NULL, 2, NULL );
xTaskCreate( vGiveAndTakeTask, "Task2", 1000, NULL, 1, NULL );
/* 启动调度器 */
vTaskStartScheduler();
}
else
{
/* 无法创建递归锁 */
}
/* 如果程序运行到了这里就表示出错了, 一般是内存不足 */
return 0;
}
两个任务经过精细设计,代码和运行流程如下图所示:
A:任务1优先级最高,先运行,获得递归锁
B:任务1阻塞,让任务2得以运行
C:任务2运行,看看能否获得别人持有的递归锁:不能
D:任务2故意执行"give"操作,看看能否释放别人持有的递归锁:不能
E:任务2等待递归锁
F:任务1阻塞时间到后继续运行,使用循环多次获得、释放递归锁
递归锁在代码上实现了:谁持有递归锁,必须由谁释放。
程序运行结果如下图所示:
使用互斥量的两个任务是相同优先级时的注意事项。
全部0条评论
快来发表一下你的评论吧 !