5G毫米波手机天线用高导热绝缘透波膜材

电子说

1.3w人已加入

描述

关键词:5G毫米波天线,低介电,高导热,绝缘,透波,国产新材料

导语:5G时代巨大数据流量对于通讯终端的芯片、天线等部件提出了更高的要求,器件功耗大幅提升的同时,引起了这些部位发热量的急剧增加。BN氮化硼散热膜是当前5G射频芯片、毫米波天线、无线充电、无线传输、IGBT、印刷线路板、AI、物联网等领域最为有效的散热材料,具有不可替代性。

材料氮化硼膜材

本产品是国内首创自主研发的高质量二维氮化硼纳米片,成功制备了大面积、厚度可控的二维氮化硼散热膜,具有透电磁波、高导热、高柔性、低介电系数、低介电损耗等多种优异特性,解决了当前我国电子封装及热管理领域面临的“卡脖子”问题,拥有国际先进的热管理TIM解决方案及相关材料生产技术,是国内低维材料技术领域顶尖的创新型高科技产品。    

5G新材料氮化硼膜材

什么是5G?

定义

“5G”一词通常用于指代第 5 代移动网络。5G 是继之前的标准(1G、2G、3G、4G 网络)之后的最新全球无线标准,并为数据密集型应用提供更高的带宽。除其他好处外,5G 有助于建立一个新的、更强大的网络,该网络能够支持通常被称为 IoT 或“物联网”的设备爆炸式增长的连接——该网络不仅可以连接人们通常使用的端点,还可以连接一系列新设备,包括各种家用物品和机器。公认的5G的优势是:

•具有更高可用性和容量的更可靠的网络

•更高的峰值数据速度(多 Gbps)

•超低延迟

与前几代网络不同,5G 网络利用在 26 GHz 至 40 GHz 范围内运行的高频波长(通常称为毫米波)。由于干扰建筑物、树木甚至雨等物体,在这些高频下会遇到传输损耗,因此需要更高功率和更高效的电源。5G部署最初可能会以增强型移动宽带应用为中心,满足以人为中心的多媒体内容、服务和数据接入需求。增强型移动宽带用例将包括全新的应用领域、性能提升的需求和日益无缝的用户体验,超越现有移动宽带应用所支持的水平。

5G应用

毫米波是关键技术

毫米波通信是未来无线移动通信重要发展方向之一,目前已经在大规模天线技术、低比特量化ADC、低复杂度信道估计技术、功放非线性失真等关键技术上有了明显研究进展。但是随着新一代无线通信对无线宽带通信网络提出新的长距离、高移动、更大传输速率的军用、民用特殊应用场景的需求,针对毫米波无线通信的理论研究与系统设计面临重大挑战,开展面向长距离、高移动毫米波无线宽带系统的基础理论和关键技术研究,已经成为新一代宽带移动通信最具潜力的研究方向之一。

毫米波的优势:   毫米波由于其频率高、波长短,具有如下特点:

频谱宽,配合各种多址复用技术的使用可以极大提升信道容量,适用于高速多媒体传输业务;可靠性高,较高的频率使其受干扰很少,能较好抵抗雨水天气的影响,提供稳定的传输信道;方向性好,毫米波受空气中各种悬浮颗粒物的吸收较大,使得传输波束较窄,增大了窃听难度,适合短距离点对点通信;波长极短,所需的天线尺寸很小,易于在较小的空间内集成大规模天线阵。

毫米波的缺点:毫米波也有一个主要缺点,那就是不容易穿过建筑物或者障碍物,并且可以被叶子和雨水吸收。这也是为什么5G网络将会采用小基站的方式来加强传统的蜂窝塔。

什么是TIM热管理?

热管理?顾名思义,就是对“热“进行管理,英文是:Thermal Management。热管理系统广泛应用于国民经济以及国防等各个领域,控制着系统中热的分散、存储与转换。先进的热管理材料构成了热管理系统的物质基础,而热传导率则是所有热管理材料的核心技术指标。

热管理对比测试

导热率,又称导热系数,反映物质的热传导能力,按傅立叶定律,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。热导率大,表示物体是优良的热导体;而热导率小的是热的不良导体或为热绝缘体。

5G手机以及硬件终端产品的小型化、集成化和多功能化,毫米波穿透力差,电子设备和许多其他高功率系统的性能和可靠性受到散热问题的严重威胁。要解决这个问题,散热材料必须在导热性、厚度、灵活性和坚固性方面获得更好的性能,以匹配散热系统的复杂性和高度集成性。

随着智能时代的来临,人们对手机的需求越来越高,手机的硬件配置也随之提高,CPU从单核到双核在逐渐提升至四核、八核,屏幕大小和分辨率也不断提升。伴随着手机硬件和性能提升所带来的则是手机发热越来越严重的问题,如果热量未能及时散发出去面临的将是手机发烫、卡顿、死机甚至爆炸等问题。

热管理散热系统

目前手机中使用的散热技术主要包括石墨散热、金属背板、边框散热、导热凝胶散热、热管散热、均温板等等。


毫米波5G手机天线

射频天线

毫米波射频天线 手机射频天线设计 手机射频天线设计布局

5G时代天线设计要求更高:首当其冲的,就是信号问题,想要信号好,就需要设计好手机的天线。而随着5G时代的来临,5G速度更快,为了做大量数据的吞吐,天线设计也采用了MIMO设计,也就是多进多出设计,5G甚至做到了4*4 MIMO。加上5G的加入,以及5G不同的频段,还可能涉及毫米波,这些使得5G天线的增加不再是增加一根这么简单,可能仅仅5G方面就要增加5至6根天线。再加上此前的2G、3G、4G的频段需要1-2根天线,仅仅这方面就需要如此多的天线数量。

手机中布满了天线,从GPS、蓝牙、wifi、2G、3G、4G等频段。频率越低,尺寸越大。毫米波,顾名思义,其波长尺度在10mm内了,照波长四分之一计算,约2.5mm的点阵,就是组成有规则间距的阵列。4G的天线一般布置在手机上下端部和侧面,采用了LDS(立体电路的一种制造工艺,激光在3D曲面塑胶上选择性沉积金属工艺)和FPC(柔性线路板)配合侧面金属边框来实现终端天线功能:金属机身手机中,外露的中框一段金属与手机内FPC组成了天线.2017年玻璃机身手机开始流行,这类手机拟用到的工艺和材质依然是FPC和LDS工艺,也有把天线制造在玻璃壳体和玻璃支架上的,0.1-0.2mm厚度3D的玻璃支架上制造边框触摸和天线。

射频天线设计的挑战

5G的手机天线特点及其工艺:(1)5G终端天线,对周边金属很敏感,由于毫米波之波长很短,来自金属的干扰是非常厉害的,印刷线路板(即PCB板),需要其与有金属的物体之间需要保持1.5mm的净空。(2)5G天线是垂直与水平天线交互的点阵,这种垂直和水平交互的天线,对应垂直和水平两个极化方向的信号收发。(3)5G天线对安装位置有特殊要求,由于5G终端天线是相控阵体系,其天线单元需要合成形成聚焦波束,因此需要规则的位置进行摆放,天线不能被金属遮挡,适合3D空间扫描,规则的空间。5G终端,被人手和人体遮挡,其信号都会开始寻找最优误码率频段,形象的说,手机像一个长了眼睛的小宠物,一旦遮挡他,他即刻眼球四处转动寻找最优信道。我们把5G手机这一动作叫手机寻优,因此,设计终端时候,安装天线位置一开始就要合适,使其好寻优。目前手机终端中,最适合5G天线位置是两端,尤其是上端部(听筒位置附近),其他4G内天线都要给其让路,也就是说有优选位置权,其他天线移到他处。(4)5G天线是一个含芯片的模组,天线点阵,16个小的米粒大小的天线,不可能用16根屏蔽线引出信号到射频芯片了,需要就地解决与芯片连接难题。引出天线与点阵天线做成一体,一般一个芯片管理四个点阵。天线模组输出不是射频信号,可以用接插件引出端子到手机主板上。

充满变革性技术创新的时代,带来了无数日常活动的变化。在这样的背景下,随着全新商业模式的涌现,提供商品与服务的旧方式被急剧改变或彻底抛弃,毫米波5G手机产品的设计也面临全新的挑战。

白石墨烯片在射频天线的应用   

六方氮化硼

六方氮化硼(h-BN)这种二维结构材料,又名白石墨烯,看上去像著名的石墨烯材料一样,仅有一个原子厚度。但是两者很大的区别是六方氮化硼是一种天然绝缘体而石墨烯是一种完美的导体。与石墨烯不同的是,h-BN的导热性能很好,可以量化为声子形式(从技术层面上讲,一个声子即是一组原子中的一个准粒子)。

结构

有材料专家说道:“使用氮化硼去控制热流看上去很值得深入研究。我们希望所有的电子器件都可以尽可能快速有效地散射。而其中的缺点之一,尤其是在对于组装在基底上的层状材料来说,热量在其中某个方向上沿着传导平面散失很快,而层之间散热效果不好,多层堆积的石墨烯即是如此。”与石墨中的六角碳网相似,六方氮化硼中氮和硼也组成六角网状层面,互相重叠,构成晶体。晶体与石墨相似,具有反磁性及很高的异向性,晶体参数两者也颇为相近。

BN SHEET  BEST MATERIALS SOLUTION PROVIDER. 


        ymf

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分