模拟技术
SIM-24MH+混频器符合RoHS指令,不含铅或其它有害物质。它还能在对单片半导体混频器而言非常危险的工作条件下经得起严峻的ESD考验(图2)。与Mini-Circuits的SIM混频器产品线其它成员一样,SIM-24MH+满足Class 1C ESD要求,能抵抗人体模式(HBM)1kV的静电冲击。标准的半导体混频器一般仅满足Class 1A 250V HBM测试要求。SIM-24MH+还满足Class M2 ESD要求。
SIM-24MH+混频器的本地振荡器(LO)覆盖7.3~20GHz范围,针对标称功率为+13dBm(见表)的LO信号而设计,可提供频带范围从0~7.5GHz的中频(IF)信号。由于具有如此宽的带宽,该器件可以在宽带应用中替代2个或3个商用混频器(图3)。当执行下变频功能时,SIM-24MH+在7.3~16GHz以及16~20GHz频段的典型变频损耗分别为6.5dB和8.0dB。
甚至在其它LO驱动功率水平上,SIM-24MH+的变频损耗特性也很好。例如,分别用+10dBm、+13dBm和+16dBm三种驱动水平对SIM-24MH+进行测试,在整个7.3~20GHz的RF频段范围内,它都表现出一致的变频损耗特性(图4)。在整个12.7GHz频带内,不同LO驱动水平下的典型变频损耗变化为+1.8/-0.2dB。
图4:SIM-24MH+在整个7.3~20GHz的RF频段范围内都具有良好的变频损耗特性。 |
SIM-24MH+混频器构建在LTCC基底材料上,因而其体积小且具有出色的温度稳定性。与传统的平面电路设计(所有电路元件都放在单层PCB的一面)相比,可从三个维度对LTCC进行设计和制造,为节省空间甚至可在层间嵌入元件。借助LTCC技术,SIM-24MH+的体积仅有5.1×4.6×2.2mm,比某些基于半导体的商用混频器体积小。此外,虽然SIM-24MH+混频器为完成其非线性变频功能集成了半导体器件(二极管),但它仍采用无源设计,并不需要DC偏置。标准的半导体器件型混频器在工作时一直需要DC偏置。
图5:SIM-24MH+在LO至RF频段范围具有高隔离度。 |
Mini-Circuits公司利用先进的电磁EM仿真工具进行CAE模型开发,并借助该模型使其LTCC产品具有优异性能和良好的制造良率。LTCC处理过程涉及到在陶瓷纤维带上制造电路,然后将它们一层一层压在一起,并送进炉内进行共烧处理,形成一个紧凑的三维构造。LTCC技术还允许把无源元件嵌在层间以减小体积。LTCC技术使多层、三维设计成为可能,从而得到比基于平面电路设计方法紧凑得多的设计。
除二极管外,SIM-24MH+的整个构造采用密封的多层LTCC实现。LTCC技术带来的高集成度使混频器体积得以最小化,从而变得极其耐用。这款混频器可以工作在军用级系统要求的极端的温度、湿度、振动和机械冲击环境中。
SIM-24MH+混频器电路设计的完整性可从其端口到端口间的高隔离度特性得以充分体现。高隔离度是在双混频器同相/正交调制器内实现高性能的关键。此外,高隔离度混频要求更少的外接额外滤波器来减少信号噪音(如LO馈通)。SIM-24MH+混频器从LO到RF的隔离测试采用与进行变频损耗测试相同的三个LO驱动功率水平,以验证LO功率变化对隔离性能的影响。如图5所示,LO到RF的隔离度指标很高(在7.3~15.0GHz频段的典型值是36dB),且在全部三个LO驱动水平上的表现都很好。类似,LO到IF的端口隔离度也是用上述三个LO驱动功率水平来评估的。SIM-24MH+混频器在7.3~20GHz的LO频率范围内的典型隔离度是20dB(图6)。
在许多应用中宽动态范围都非常重要,因此从7.3~20GHz频段内的SIM-24MH+混频器的输入三阶截止点(IP3)也是采用这三个LO驱动功率水平(+10dBm、+13dBm和+16dBm)来评估。该混频器的输入IP3在此频段的绝大部分都高于+14dBm(图7),在17~20GHz频段范围为+25dBm。该LTCC双均衡混频器的典型LO端口回波损耗(VSWR)是2.5:1。在RF口测量到的典型VSWR值是3.0:1、在IF口测量到的典型VSWR值是2.0:1。
基于稳定LTCC工艺的SIM-24MH+混频器为毫米波应用提供了一种性能极高的紧凑型方案。它支持传统的表面贴封装应用,它还可以卷盘条带形式供货,以便用于自动组装设备。SIM-24MH+是符合RoHS要求的混频器,可满足多种应用需要,与对ESD更敏感(通常也更大)的半导体混频器相比,SIM-24MH+可承受更大的ESD冲击。随着SIM-24MH+的问世,Mini-Circuits的SIM系列混频器覆盖了0.75~20GHz范围(图8)。该系列混频器的体积和外观引脚完全相同,用户可方便地改变频率而无须更改PCB布局。
全部0条评论
快来发表一下你的评论吧 !