电源设计应用
本文较深入地讨论了两种常用模式的RCD Snubber电路:抑制电压上升率模式与电压钳位模式,详细分析了其各自的工作原理,给出了相应的计算公式,最后通过实验提出了电路的优化设计方法。
RCD Snubber电路的基本类型及其工作原理
RCD Snubber是一种能耗式电压关断型缓冲器,分为抑制电压上升率模式和电压钳位模式两种类型,习惯上前者称为RCD Snubber电路,而后者则称为RCD Clamp电路。
为了分析方便,以下的分析或举例均针对反激电路拓扑,开关器件为功率MOSFET。
图1 常用的RCD Snubber电路
抑制电压上升率模式
对于功率MOSFET来讲,其电流下降的速度较GTR或IGBT快得多,其关断损耗的数值要比GTR或IGBT小,但是这个损耗对整个小功率的电源系统也是不容忽视的。因此提出了抑制电压上升率的RCD Snubber。
如图1所示,在开关管关断瞬间,反激变压器的漏感电流需要按原初始方向继续流动,该电流将分成两路:一路在逐渐关断的开关管继续流动;另一路通过Snubber电路的二极管Ds向电容Cs充电。由于Cs上的电压不能突变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了Snubber电路。如果Cs足够大,开关管电压的上升及其电流的下降所形成的交叉区域将会进一步降低,可以进一步降低开关管的关断损耗。但是Cs的取值也不能过大,因为在每一个关断期间的起始点(也就是开通期间的结束点),Cs必须放尽电荷以对电压上升率进行有效的抑制;而在关断期间的结束点,Cs虽然能降低开关管电压的上升时间,但其端电压最终会达到()(为忽略漏感时的电压尖峰,为次级对初级的反射电压)。
关管导通的瞬间,Cs将通过电阻Rs与M所形成的回路来放电。Snubber的放电电流将流过开关管,会产生电流突波,并且如果某个时刻占空比变窄,电容将不能放尽电荷而不能达到降低关断损耗的目的。
可见,Snubber电路仅在开关过渡瞬间工作,降低了开关管的损耗,提高了电路的可靠性,电压上升率的减慢也降低了高频电磁干扰。
电压钳位模式
RCD Clamp不同于Snubber模式,其目的是限制开关管关断瞬间其两端的最大尖峰电压,而开关管本身的损耗基本不变。在工作原理上电压钳位模式RC的放电时间常数比抑制电压上升率模式更长。
以图2为例分析电路的工作过程,并且使用工作于反激式变换器的变压器模型。反激式变压器主要由理想变压器、激磁电感与漏感组成。
图2反激式变换器的Clamp电路
会发生高频谐振而使开关管DS两端电压升高,但是由于漏感产生的VSPIKE的能量能够及时转移到CC中,而使CC的端电压从次级反射电压VOR上升到最大值(VOR+VSPIKE);当开关管导通时,CC通过电阻RC放电,这样在下个周期开关管关断前,能够使得CC的端电压从(VOR+VSPIKE)恢复到VOR。这样,只要能够合理设置时间常数,就能保证在一个周期内将漏感转移到CC中的能量释放完毕。
CC端电压在理想情况下基本上是恒定的,仅在充、放电时存在一个变化量VSPIKE。而漏感的电流始终和初级电流串联的,所以漏感电流的下降过程就是次级电流的上升过程。而漏感电流的下降过程是由RCD Clamp电路CC上的压降和反射电压VOR的差值决定的,差值越大电流下降就越快,能量传输也越快,因而效率会明显提高。所以,此时开关管DS的电压为(+VOR+VSPIKE)。这样漏感两端的电压将为VSPIKE(一般可取10V"20V),如图3所示。由法拉第定律可知因漏感引起的初、次级能量传输的延迟时间为:(8)其中,IP为在开关管关断时电感的峰值电流。
图3 关断瞬间开关管DS电压与其电流波形
如果电路参数选择适当,RCD Clamp电路两端的电压尖峰将通过CC来吸收,并且需要达到能量平衡,因漏感而产生的能量将完全消耗在RC上。
实验结果分析
实验中采用一个输出功率为3.5W的反激式开关电源样机,其主要参数如下:
PO=3.5W;VIN=220VAC;fs=43kHz;IP=0.1A;LP=6.63mH ;=871.3mH;NP=75;NS=12;次级对初级的反射电压,取VOR=80V。另取VSPIKE=20V;开关管选用SMP4N100,其tr=18ns。
Snubber电路参数选择及相关波形图
经计算得出:
CS=2.143pF,RS=4.2k健?由于几pF的电容不容易得到,故可以用10个22pF的瓷介电容串联来等效代用。有RCD Snubber电容时,开关管两端的电压VDS波形见图4;无Snubber电容的VDS波形见图5。
图4 有Clamp无Snubber的波形
图5 Clamp+Snubber(2.2pF+4.2k)的波形
由图5可以看出,加上合适的Snubber电路后,VDS的上升率有所减缓,因而可以转移开关管的关断损耗至Snubber电路的RS。
值得注意的是,由于实验电源的功率很小,因而Snubber电路的电容数值很小以至作用不大。但如果用在大功率电路中,电容的数值会较大,因而效果将更为明显。
RCD Clamp电路参数选择及相关波形图
经计算得出:CC=815.87pF;RC=300.19k?实际中选取CC=1nF,Rc分别选取270k郊?00k剑?⑶曳直鹪谟蠷CD Clamp及无RCD Clamp下对比两者的实际效果。
图6为不加Clamp电路时开关管电压波形VDS,其端电压已超过600V;图7为Clamp电路中选取RC=270k剑珻C=1nF,端电压为474V。
图6 无Clamp 时的波形
图7 Clamp:270k+1nF的波形
可见,采用Clamp电路并选取利用公式计算出的数值,可使开关管端电压VDS有效地钳位到合适的电压水平,为实际所用。
结语
通过适当选取RCD Snubber 的电路参数,可有效地改善开关管的开关轨迹,降低其关断电压的上升速率,可以转移开关管的损耗至Snubber电路的电阻上,提高开关管的工作可靠性,同时改善电路的高频电磁干扰,但Snubber电路基本上不会提高整机的工作效率。
反激式变换器在开关管关断时,存在很高的电压尖峰,通过适当选取RCD Clamp的电路参数,可以对开关管实现电压钳位,避免因过高的电压尖峰使开关管受损。但是,因Clamp电路消耗了变压器漏感上的能量,从而在一定程度上影响了整机的工作效率。
全部0条评论
快来发表一下你的评论吧 !