嵌入式设计应用
随着目前线路板密度不断增高以及封装不断缩小,过去的检测方法已不能满足高速生产的要求,一种新的矢量检测法应运而生。在PCB装配过程中采用矢量成像技术来识别和放置组件,可以提高检测的精密度、速度和可靠性。
PCB装配生产在线的每台设备其性能都因需求而异,生产厂商对产量的要求加上线路板上更高的密度、更复杂的排板技术及更小的组件等等,都给锡膏涂覆、组件贴放、回流焊以及对这些过程进行检测带来了极大的困难。
产量提高和封装减小增加了检测难度,使得现在的检测和分析方法已跟不上业界发展的需求。过去几年?人们开发出多种不同类型的方法对印刷电路板装配进行检测,如X射线检测、激光扫描、自动光学检测(AOI)及X射线/AOI混合检测等,这些方法中只有AOI具有在线检测能力,而其它方法只能在较小范围内使用,如激光扫描用于锡膏检测,二维或三维X射线则用于检测面数组器件内的锡球互联情况。
自动光学检测的基本原理是使用软件工具使作业人员找到并确定组件的位置,可检测出有引脚器件、芯片级封装(CSP)及球栅数组(BGA)封装器件等。传统AOI依靠对像素网格值进行分析来确认线路板上组件的位置,这种方法又称为灰度相关法,它将组件灰度模型或参考图与板上实际组件相比较,一旦选准要搜索的模型,图像处理系统就藉由计算像素数目找寻一个与之精确匹配的组件,如果找到了,组件的位置也就知道了。由于系统不断会检测到一些新组件,因此为适应这些新的组件形状参考图形可能经常发生变化。
当组件相对参考模型旋转了一个角度或者大小不太一致时,像素网格分析方法就会出问题。同样,产品的颜色、光照及背景情况也很重要,如果变化很大,可能很难或者根本就找不到相匹配的模型。
矢量成像技术
矢量成像技术采用合成图像作为示教参考模型,以确保不产生错误。矢量成像不需要像素分析,它靠的是定义组件形状的交点矢量,矢量由方向和倾斜度确定,在矢量成像技术?一个正方形相当于四条线段,一个足球则相当于两个弧形。
矢量成像技术采用窗口操作系统,使用一种高分辨率数字相机,系统采用统计过程控制(SPC)软件和一个根据线路板上所装配并需要进行检查测量分析组件所作的综合组件图形库,它能将Gerber、CAD或ASCII/Centrid数据转换成机器代码。
为得到最佳对比度和成像清晰度,需要用到几种光源,检查时由程序来选择光源、颜色组合和光强,以达到最佳视觉效果。为了确保识别的正确性,组件的高度必须小于8mm(从PCB板表面到组件顶端)。
由于矢量成像技术用到的是几何信息,所以组件是否旋转、得到的图形与参考模型大小是否一致都没有影响,而且也和产品颜色、光照和背景等的变化无关。矢量成像检查分三部进行:
1. 矢量成像系统在组件影像图上找出主要特征并将其分离出来(图1),然后对这些显著特征进行测量,包括形状、尺寸、角度、弧度和明暗度等;
2. 检查合成图像和被测组件图像主要特征的空间关系;
3. 最后,不论组件旋转角度、大小或相对其背景的总体外观如何,它在线路板上的x、y和θ值都可藉由计算确定下来。
和其它检测方法不同,矢量成像技术只要创建了参考模型,就能适应线路板上的每一个组件,而不管其形状、大小和方向。当把组件模型从一台视像检查设备转移到另一台光学系统不同的设备上时,所得到的图像大小会发生改变,但此时系统能自动对变化进行处理。
此外,矢量成像技术还能适应组件外观变化(图2)、组件上附加的其它特性或由于重迭造成某个组件部份被隐藏遮挡,传统的像素网格系统一般无法分析出被遮挡组件的位置。
矢量成像技术的优点.
除了能适应板上组件轮廓和位置的变化外,矢量成像与像素网格技术相比还有其它一些优点:
• 这种方式比传统检测方法准确10倍以上,如角度测量值可达±0.02°精密度范围。
• 使用合成图形库,检测系统完全可以直接从一个制造工厂移到另一个制造工厂。
• 由于它能适应多种不同的角度、大小和外观,所以光学设备的设置更加简单,即使由于相机移动和光源变化导致焦点和照度改变也能保持同样的精密度。
• 在基板对位方面,传统的AOI系统对同一组件通常需要多个图像,而矢量成像技术一次测量就能完成。
• 当把设备从一条生产线移到别的生产线的时候,矢量成像不需要重新进行校准或做其它设置测量。
本文结论
矢量成像技术是一种图形位置搜索技术,它可以在PCB板装配过程中提高组件识别定位的精密度、速度和可靠性。矢量成像技术可以很方便地用于专用生产环境下。对OEM厂商和电子制造服务(EMS)供货商来说,关键是要提高组件的检测能力并降低整体制造费用。
全部0条评论
快来发表一下你的评论吧 !