一文详解STM32单片机的启动文件

描述

一、概述

1、说明

每一款芯片的启动文件都值得去研究,因为它可是你的程序跑的最初一段路,不可以不知道。通过了解启动文件,我们可以体会到处理器的架构、指令集、中断向量安排等内容,是非常值得玩味的。

STM32作为一款高端Cortex-M3系列单片机,有必要了解它的启动文件。打好基础,为以后优化程序,写出高质量的代码最准备。

2、整体过程概括

STM整个启动过程是指从上电开始,一直到运行到main函数之间的这段过程,步骤为(以使用微库为例):

①上电后硬件设置SP、PC

②设置系统时钟

③软件设置SP

④加载.data、.bss,并初始化栈区

⑤跳转到C文件的main函数

3、整个启动过程涉及的代码

启动过程涉及的文件不仅包含startup_stm32f10x_hd.s,还涉及到了MDK自带的连接库文件entry.o、entry2.o、entry5.o、entry7.o等(从生成的map文件可以看出来)。

二、程序在Flash上的存储结构

在真正讲解启动过程之前,先要讲解程序下载到Flash上的结构和程序运行时(执行到main函数)时的SRAM数据结构。程序在用户Flash上的结构如下图所示。下图是通过阅读hex文件和在MDK下调试综合提炼出来的。

单片机

MSP初始值        编译器生成,主堆栈的初始值

异常向量表        不多说

外部中断向量表      不多说

代码段          存放代码

初始化数据段       .data

未初始化数据段      .bss 

加载数据段和初始化栈的参数

加载数据段和初始化栈的参数分别有4个,这里只讲解加载数据段的参数,至于初始化栈的参数类似。

0x0800 033c Flash上的数据段(初始化数据段和未初始化数据段)起始地址

0x2000 0000  加载到SRAM上的目的地址

0x0000 000c  数据段的总大小

0x0800 02f4  调用函数_scatterload_copy

需要说明的是初始化栈的函数--0x0800 0304与加载数据段的函数不一样,为_scatterload_zeroinit,它的目的就是将栈空间清零。

单片机

三、数据在SRAM上的结构

程序运行时(执行到main函数)时的SRAM数据结构

单片机

四、详细过程分析

有了以上的基础,现在详细分析启动过程。

1、上电后硬件设置SP、PC

刚上电复位后,硬件会自动根据向量表偏移地址找到向量表,向量表偏移地址的定义如下:

单片机

调试现象如下:

单片机

看看我们的向量表内容(通过J-Flash打开hex文件)

单片机

硬件这时自动从0x0800 0000位置处读取数据赋给栈指针SP,然后自动从0x0800 0004位置处读取数据赋给PC,完成复位,结果为:

SP = 0x0200 0810

PC = 0x0800 0145

 2、设置系统时钟

单片机

上一步中令PC=0x0800 0145的地址没有对齐,硬件自动对齐到0x0800 0144,执行SystemInit函数初始化系统时钟。

3、软件设置SP

  LDR   R0,=__main
  BX   R0

  执行上两条之类,跳转到__main程序段运行,注意不是main函数,___main的地址是0x0800 0130。

单片机

可以看到指令LDR.W sp,[pc,#12],结果SP=0x2000 0810。

4、加载.data、.bss,并初始化栈区

BL.W     __scatterload_rt2

进入 __scatterload_rt2代码段。

__scatterload_rt2:0x08000168 4C06      LDR      r4,[pc,#24]  ; 
@0x080001840x0800016A 4D07   LDR  r5,[pc,#28]  ; 
@0x080001880x0800016C E006    B   0x0800017C0x0800016E 68E0 LDR      
r0,[r4,#0x0C]0x08000170 F0400301  ORR      
r3,r0,#0x010x08000174 E8940007  LDM  r4,{r0-r2}0x08000178 4798     
BLX r30x0800017A 3410  ADDS  r4,r4,#0x100x0800017C 42AC      
CMP r4,r50x0800017E D3F6  BCC 0x0800016E0x08000180 F7FFFFDA  
BL.W   _main_init (0x08000138)

 这段代码是个循环(BCC 0x0800016e),实际运行时候循环了两次。第一次运行的时候,读取“加载数据段的函数(_scatterload_copy)”的地址并跳转到该函数处运行(注意加载已初始化数据段和未初始化数据段用的是同一个函数);第二次运行的时候,读取“初始化栈的函数(_scatterload_zeroinit)”的地址并跳转到该函数处运行。 相应的代码如下:

0x0800016E 68E0      LDR      r0,[r4,#0x0C]
0x08000170 F0400301  ORR      r3,r0,#0x01
0x08000174  
0x08000178 4798      BLX      r3
当然执行这两个函数的时候,还需要传入参数。
至于参数,我们在“加载数据段和初始化栈的参数”环节已经阐述过了。
当这两个函数都执行完后,结果就是“数据在SRAM上的结构”所展示的图。
最后,也把事实加载和初始化的两个函数代码奉上如下:
5、跳转到C文件的main函数
_main_init:0x08000138 4800      LDR      r0,[pc,#0]  ;
@0x0800013C0x0800013A 4700      BX       r0

五、异常向量与中断向量表 

; Vector Table Mapped to Address 0 at Reset
                AREA    RESET, DATA, READONLY
                EXPORT  __Vectors
                EXPORT  __Vectors_End
                EXPORT  __Vectors_Size
__Vectors       DCD     __initial_sp               ; Top of Stack
                DCD     Reset_Handler              ; Reset Handler
                DCD     NMI_Handler                ; NMI Handler
                DCD     HardFault_Handler          ; Hard Fault Handler
                DCD     MemManage_Handler          ; MPU Fault Handler
                DCD     BusFault_Handler           ; Bus Fault Handler
                DCD     UsageFault_Handler         ; Usage Fault Handler
                DCD     0                          ; Reserved
                DCD     0                          ; Reserved
                DCD     0                          ; Reserved
                DCD     0                          ; Reserved
                DCD     SVC_Handler                ; SVCall Handler
                DCD     DebugMon_Handler           ; Debug Monitor Handler
                DCD     0                          ; Reserved
                DCD     PendSV_Handler             ; PendSV Handler
                DCD     SysTick_Handler            ; SysTick Handler
                ; External Interrupts
                DCD     WWDG_IRQHandler            ; Window Watchdog
                DCD     PVD_IRQHandler             ; PVD through EXTI Line
                DCD     TAMPER_IRQHandler          ; Tamper
                DCD     RTC_IRQHandler             ; RTC
                DCD     FLASH_IRQHandler           ; Flash
                DCD     RCC_IRQHandler             ; RCC
                DCD     EXTI0_IRQHandler           ; EXTI Line 0
                DCD     EXTI1_IRQHandler           ; EXTI Line 1
                DCD     EXTI2_IRQHandler           ; EXTI Line 2
                DCD     EXTI3_IRQHandler           ; EXTI Line 3
                DCD     EXTI4_IRQHandler           ; EXTI Line 4
                DCD     DMA1_Channel1_IRQHandler   ; DMA1 Channel 1
                DCD     DMA1_Channel2_IRQHandler   ; DMA1 Channel 2
                DCD     DMA1_Channel3_IRQHandler   ; DMA1 Channel 3
                DCD     DMA1_Channel4_IRQHandler   ; DMA1 Channel 4
                DCD     DMA1_Channel5_IRQHandler   ; DMA1 Channel 5
                DCD     DMA1_Channel6_IRQHandler   ; DMA1 Channel 6
                DCD     DMA1_Channel7_IRQHandler   ; DMA1 Channel 7
                DCD     ADC1_2_IRQHandler          ; ADC1 & ADC2
                DCD     USB_HP_CAN1_TX_IRQHandler  ; USB High Priority or CAN1 TX
                DCD     USB_LP_CAN1_RX0_IRQHandler ; USB Low  Priority or CAN1 RX0
                DCD     CAN1_RX1_IRQHandler        ; CAN1 RX1
                DCD     CAN1_SCE_IRQHandler        ; CAN1 SCE
                DCD     EXTI9_5_IRQHandler         ; EXTI Line 9..5
                DCD     TIM1_BRK_IRQHandler        ; TIM1 Break
                DCD     TIM1_UP_IRQHandler         ; TIM1 Update
                DCD     TIM1_TRG_COM_IRQHandler    ; TIM1 Trigger and Commutation
                DCD     TIM1_CC_IRQHandler         ; TIM1 Capture Compare
                DCD     TIM2_IRQHandler            ; TIM2
                DCD     TIM3_IRQHandler            ; TIM3
                DCD     TIM4_IRQHandler            ; TIM4
                DCD     I2C1_EV_IRQHandler         ; I2C1 Event
                DCD     I2C1_ER_IRQHandler         ; I2C1 Error
                DCD     I2C2_EV_IRQHandler         ; I2C2 Event
                DCD     I2C2_ER_IRQHandler         ; I2C2 Error
                DCD     SPI1_IRQHandler            ; SPI1
                DCD     SPI2_IRQHandler            ; SPI2
                DCD     USART1_IRQHandler          ; USART1
                DCD     USART2_IRQHandler          ; USART2
                DCD     USART3_IRQHandler          ; USART3
                DCD     EXTI15_10_IRQHandler       ; EXTI Line 15..10
                DCD     RTCAlarm_IRQHandler        ; RTC Alarm through EXTI Line
                DCD     USBWakeUp_IRQHandler       ; USB Wakeup from suspend
                DCD     TIM8_BRK_IRQHandler        ; TIM8 Break
                DCD     TIM8_UP_IRQHandler         ; TIM8 Update
                DCD     TIM8_TRG_COM_IRQHandler    ; TIM8 Trigger and Commutation
                DCD     TIM8_CC_IRQHandler         ; TIM8 Capture Compare
                DCD     ADC3_IRQHandler            ; ADC3
                DCD     FSMC_IRQHandler            ; FSMC
                DCD     SDIO_IRQHandler            ; SDIO
                DCD     TIM5_IRQHandler            ; TIM5
                DCD     SPI3_IRQHandler            ; SPI3
                DCD     UART4_IRQHandler           ; UART4
                DCD     UART5_IRQHandler           ; UART5
                DCD     TIM6_IRQHandler            ; TIM6
                DCD     TIM7_IRQHandler            ; TIM7
                DCD     DMA2_Channel1_IRQHandler   ; DMA2 Channel1
                DCD     DMA2_Channel2_IRQHandler   ; DMA2 Channel2
                DCD     DMA2_Channel3_IRQHandler   ; DMA2 Channel3
                DCD     DMA2_Channel4_5_IRQHandler ; DMA2 Channel4 & Channel5
__Vectors_End
这段代码就是定义异常向量表,在之前有一个“J-Flash打开hex文件”的图片跟这个表格是一一对应的。编译器根据我们定义的函数 Reset_Handler、NMI_Handler等,在连接程序阶段将这个向量表填入这些函数的地址。
startup_stm32f10x_hd.s内容:
NMI_Handler     PROC
                EXPORT  NMI_Handler                [WEAK]
                B       .
                ENDP
stm32f10x_it.c中内容:void NMI_Handler(void)
{
}

在启动汇编文件中已经定义了函数NMI_Handler,但是使用了“弱”,它允许我们再重新定义一个NMI_Handler函数,程序在编译的时候会将汇编文件中的弱函数“覆盖掉”--两个函数的代码在连接后都存在,只是在中断向量表中的地址填入的是我们重新定义函数的地址。 

六、使用微库与不使用微库的区别

 单片机

使用微库就意味着我们不想使用MDK提供的库函数,而想用自己定义的库函数,比如说printf函数。那么这一点是怎样实现的呢?我们以printf函数为例进行说明。

1、不使用微库而使用系统库

在连接程序时,肯定会把系统中包含printf函数的库拿来调用参与连接,即代码段有系统库的参与。

在启动过程中,不使用微库而使用系统库在初始化栈的时候,还需要初始化堆(猜测系统库需要用到堆),而使用微库则是不需要的。

 

IF __MICROLIB
EXPORT  __initial_sp
EXPORT  __heap_base
EXPORT  __heap_limit
ELSE
IMPORT  __use_two_region_memory
EXPORT  __user_initial_stackheap
__user_initial_stackheap
LDR  R0, =  Heap_Mem
LDR  R1, =(Stack_Mem + Stack_Size)
LDR  R2, = (Heap_Mem +  Heap_Size)
LDR  R3, = Stack_Mem
BX  LR
ALIGN
ENDIF

另外,在执行__main函数的过程中,不仅需要完成“使用微库”情况下的所有工作,额外的工作还需要进行库的初始化,才能使用系统库(这一部分我还没有深入探讨)。附上__main函数的内容:

__main:0x08000130 F000F802  BL.W     
__scatterload_rt2_thumb_only (0x08000138)   
__rt_entry_sh (0x080001B0)
__scatterload_rt2_thumb_only:0x08000138 A00A  
__scatterload_null:0x08000146 45DA      CMP      
__scatterload_copy:0x0800016C 3A10      SUBS    
__scatterload_zeroinit:0x08000188 2300  0001A2 
__rt_lib_init:0x080001A4 B51F      PUSH         
__rt_lib_init_user_alloc_1:0x080001AA BD1F      
__rt_lib_shutdown:0x080001AC B510      PUSH    
__rt_lib_shutdown_user_alloc_1:0x080001AE BD10     
__rt_entry_sh:0x080001B0 F000F82F  BL.W
__rt_entry_postsh_1:0x080001B6 F7FFFFF5  BL.W     
__rt_entry_postli_1:0x080001BA F000F919  BL.W

2、使用微库而不使用系统库

在程序连接时,不会把包含printf函数的库连接到终极目标文件中,而使用我们定义的库。启动时需要完成的工作就是之前论述的步骤1、2、3、4、5,相比使用系统库,启动过程步骤更少。

 

原文标题:【编程高手都必备】STM32F1x系列精髓启动过程与启动文件分析

文章出处:【微信公众号:开源嵌入式】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分