STM32的硬件I2C设计有BUG

电子说

1.3w人已加入

描述

坊间一直流传着一个传说~STM32的硬件I2C设计有BUG,最好不要用,用软件I2C比较靠谱。长久以来,为了不必要的麻烦,我也一直没有用过硬件I2C,主要是软件I2C也比较方便,基本上任意端口都可以用。

最近画了块板子,正好用到了I2C,就顺便来测试一下硬件I2C是不是真的像有些人说的不好用。

测试硬件:STM32F407VET6+AT24C64测试软件:STM32CubeMX v6.1.1HAL库:STM32CubeF4 Firmware Package V1.25.2

STM32CubeMX配置 使用STM32CubeMX配置很方便,时钟等基础配置不再详细介绍,直接看I2C配置如下:

I2C

这里的速度模式选择为标准模式,时钟为100K。要求高的可以选择Fast模式,400K时钟。 配置完成后生成代码。

编写代码 代码生成后,直接调用读写数据的函数即可: HAL_I2C_Mem_Read HAL_I2C_Mem_Write 函数参数可参考代码注释。 24CXX系列的EEPROM进行写操作时需要注意,跨页写入时,要有一定的延时,否则会写入不成功。不同容量的页大小也不一样。 另外,24C16以下容量的地址为8位,24C32以上容量的地址为16位,在调用读写函数时需要注意,选择I2C_MEMADD_SIZE_8BIT或者I2C_MEMADD_SIZE_16BIT。测试使用的是24C64,所以选择I2C_MEMADD_SIZE_16BIT。 为了方便操作,将读写函数再封装一层,将跨页写入的各种情况都考虑到,实现任意地址连续写入。程序如下:

#include “at24c64.h”#include “i2c.h”

#define AT24CXX_ADDR_READ

0xA1#define AT24CXX_ADDR_WRITE

0xA0#define PAGE_SIZE

32/** * @brief

AT24C64任意地址连续读多个字节数据 * @param

addr —— 读数据的地址(0-65535) * @param

dat —— 存放读出数据的地址 * @retval

成功 —— HAL_OK*/uint8_t At24cxx_Read_Amount_Byte(uint16_t addr, uint8_t* recv_buf, uint16_t size){

return HAL_I2C_Mem_Read(&hi2c2, AT24CXX_ADDR_READ, addr, I2C_MEMADD_SIZE_16BIT, recv_buf, size, 0xFFFFFFFF);}

/** * @brief

AT24C64任意地址连续写多个字节数据 * @param

addr —— 写数据的地址(0-65535) * @param

dat —— 存放写入数据的地址 * @retval

成功 —— HAL_OK*/uint8_t At24cxx_Write_Amount_Byte(uint16_t addr, uint8_t* dat, uint16_t size){

uint8_t i = 0; uint16_t cnt = 0;

//写入字节计数

/* 对于起始地址,有两种情况,分别判断 */

if(0 == addr % PAGE_SIZE )

{

/* 起始地址刚好是页开始地址 */

/* 对于写入的字节数,有两种情况,分别判断 */

if(size 《= PAGE_SIZE)

{

//写入的字节数不大于一页,直接写入

return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size, 0xFFFFFFFF);

}

else

{

//写入的字节数大于一页,先将整页循环写入

for(i = 0;i 《 size/PAGE_SIZE; i++)

{

HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE, 0xFFFFFFFF);

HAL_Delay(3);

addr += PAGE_SIZE;

cnt += PAGE_SIZE;

}

//将剩余的字节写入

return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt, 0xFFFFFFFF);

}

}

else

{

/* 起始地址偏离页开始地址 */

/* 对于写入的字节数,有两种情况,分别判断 */

if(size 《= (PAGE_SIZE - addr%PAGE_SIZE))

{

/* 在该页可以写完 */

return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size, 0xFFFFFFFF);

}

else

{

/* 该页写不完 */

//先将该页写完

cnt += PAGE_SIZE - addr%PAGE_SIZE;

HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, cnt, 0xFFFFFFFF);

addr += cnt;

HAL_Delay(3);

//循环写整页数据

for(i = 0;i 《 (size - cnt)/PAGE_SIZE; i++)

{

HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE, 0xFFFFFFFF);

HAL_Delay(3);

addr += PAGE_SIZE;

cnt += PAGE_SIZE;

}

//将剩下的字节写入

return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt, 0xFFFFFFFF);

}

}}

测试结果经过测试硬件I2C读写EEPROM正常。没有发现所谓的BUG,当然这只是M4内核的针对EEPROM一种器件的测试,对于其它内核(M3等)和其它I2C器件,还有待验证。

总结硬件I2C使用起来比较简单,不需要自己去调节时序,但是只能使用固定的几个引脚。软件模拟I2C可以使用任意引脚,针对不同的MCU,移植起来比较方便,但对于不同频率的MCU,时序调节比较麻烦。

两者各有其优缺点,需要根据实际需求去选择。

审核编辑 :李倩

 

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分