分享了一份面试真题,整理了一下答案给大家。如果有不正确的,欢迎指出哈,一起进步。
512M
,但是一般建议key的大小不要超过1KB
,这样既可以节约存储空间,又有利于Redis进行检索。512M
。对于String类型的value值上限为512M
,而集合、链表、哈希等key类型,单个元素的value上限也为512M
。set
:它可以去除重复元素,也可以快速判断某一个元素是否存在于集合中,如果元素很多(比如上亿的计数),占用内存很大。bit
:它可以用来实现比set内存高度压缩的计数,它通过一个bit设置为1或者0,表示存储某个元素是否存在信息。例如网站唯一访客计数,可以把user_id
作为 bit 的偏移量 offset,如设置为1表示有访问,使用1 MB的空间就可以存放800多万用户的一天访问计数情况。HyperLogLog
:实现超大数据量精确的唯一计数都是比较困难的,HyperLogLog
可以仅仅使用 12 k左右的内存,实现上亿的唯一计数,而且误差控制在百分之一左右。bloomfilter
布隆过滤器:布隆过滤器是一种占用空间很小的数据结构,它由一个很长的二进制向量和一组Hash映射函数组成,它用于检索一个元素是否在一个集合中关于布隆过滤器,关注 数据分析与开发 公号,回复 布隆过滤器 即可获取。
大家先回忆下Java序列化,什么时候需要序列化?
为什么需要序列化呢?
打个比喻:作为大城市漂泊的码农,搬家是常态。当我们搬书桌时,桌子太大了就通不过比较小的门,因此我们需要把它拆开再搬过去,这个拆桌子的过程就是序列化。而我们把书桌复原回来(安装)的过程就是反序列化啦。
RedisSerializer接口 是 Redis 序列化接口,用于 Redis KEY 和 VALUE 的序列化
InnoDB存储引擎最小储存单元是页,一页大小就是16k。
B+树叶子存的是数据,内部节点存的是键值+指针。索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而再去数据页中找到需要的数据;
假设B+树的高度为2的话,即有一个根结点和若干个叶子结点。这棵B+树的存放总记录数为=根结点指针数*单个叶子节点记录行数。
因此,一棵高度为2的B+树,能存放1170 * 16=18720条这样的数据记录。同理一棵高度为3的B+树,能存放1170 *1170 *16 =21902400,也就是说,可以存放两千万左右的记录。B+树高度一般为1-3层,已经满足千万级别的数据存储。
线程池和线程的状态是不一样的哈,线程池有这几个状态:RUNNING,SHUTDOWN,STOP,TIDYING,TERMINATED
。
//线程池状态
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
线程池各个状态切换状态图如下:
RUNNING
shutdown()
方法,可以切换到SHUTDOWN状态;shutdownNow()
方法,可以切换到STOP状态;SHUTDOWN
STOP
TIDYING
terminated()
执行完毕,进入TERMINATED状态TERMINATED
ThreadPoolExecutor的构造函数:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,long keepAliveTime,TimeUnit unit,
BlockingQueue workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
几个核心参数的作用:
四种饱和拒绝策略
线程池原理:
为了形象描述线程池执行,我打个比喻:
ThreadLocal,即线程本地变量。如果你创建了一个ThreadLocal变量,那么访问这个变量的每个线程都会有这个变量的一个本地拷贝,多个线程操作这个变量的时候,实际是操作自己本地内存里面的变量,从而起到线程隔离的作用,避免了线程安全问题。
ThreadLocal的应用场景
ThreadLocal内存结构图:
ThreadLocal原理
ThreadLocal 内存泄露问题
先看看一下的TreadLocal的引用示意图哈,
ThreadLocalMap中使用的 key 为 ThreadLocal 的弱引用,如下
弱引用:只要垃圾回收机制一运行,不管JVM的内存空间是否充足,都会回收该对象占用的内存。
弱引用比较容易被回收。因此,如果ThreadLocal(ThreadLocalMap的Key)被垃圾回收器回收了,但是因为ThreadLocalMap生命周期和Thread是一样的,它这时候如果不被回收,就会出现这种情况:ThreadLocalMap的key没了,value还在,这就会造成了内存泄漏问题。
如何解决内存泄漏问题?使用完ThreadLocal后,及时调用remove()方法释放内存空间。
kafka这样保证消息有序性的:
大家可以看下消息队列的有序性是怎么推导的哈:
消息的有序性,就是指可以按照消息的发送顺序来消费。有些业务对消息的顺序是有要求的,比如先下单再付款,最后再完成订单,这样等。假设生产者先后产生了两条消息,分别是下单消息(M1),付款消息(M2),M1比M2先产生,如何保证M1比M2先被消费呢。
为了保证消息的顺序性,可以将将M1、M2发送到同一个Server上,当M1发送完收到ack后,M2再发送。如图:
这样还是可能会有问题,因为从MQ服务器到服务端,可能存在网络延迟,虽然M1先发送,但是它比M2晚到。
那还能怎么办才能保证消息的顺序性呢?将M1和M2发往同一个消费者,且发送M1后,等到消费端ACK成功后,才发送M2就得了。
消息队列保证顺序性整体思路就是这样啦。比如Kafka的全局有序消息,就是这种思想的体现: 就是生产者发消息时,1个Topic
只能对应1个Partition
,一个 Consumer
,内部单线程消费。
但是这样吞吐量太低,一般保证消息局部有序即可。在发消息的时候指定Partition Key
,Kafka对其进行Hash计算,根据计算结果决定放入哪个Partition
。这样Partition Key相同的消息会放在同一个Partition。然后多消费者单线程消费指定的Partition。
Nacos作为配置中心的功能是基于Raft算法来实现的。
Raft 算法是分布式系统开发首选的共识算法,它通过“一切以领导者为准”的方式,实现一系列值的共识和各节点日志的一致。
Raft选举过程涉及三种角色和任期(Term):
领导选举过程
TCC是分布式事务的一种解决方案。它采用了补偿机制,其核心思想是:针对每个操作,都要注册一个与其对应的确认和补偿(撤销)操作。TCC(Try-Confirm-Cancel)包括三段流程:
下面再拿用户下单购买礼物作为例子来模拟TCC实现分布式事务的过程:
假设用户A余额为100金币,拥有的礼物为5朵。A花了10个金币,下订单,购买10朵玫瑰。余额、订单、礼物都在不同数据库。
TCC的Try阶段:
TCC的Confirm阶段:
TCC的Cancel阶段:
审核编辑 :李倩
全部0条评论
快来发表一下你的评论吧 !