我们如何定义ROI?

描述

 

OpenCV是一个巨大的开源库,广泛用于计算机视觉,人工智能和图像处理领域。它在现实世界中的典型应用是人脸识别,物体检测,人类活动识别,物体跟踪等。

现在,假设我们只需要从整个输入帧中检测到一个对象。因此,代替处理整个框架,如果可以在框架中定义一个子区域并将其视为要应用处理的新框架,该怎么办。我们要完成一下三个步骤:

定义兴趣区

在ROI中检测轮廓

阈值检测轮廓轮廓线

什么是ROI

简而言之,我们感兴趣的对象所在的帧内的子区域称为感兴趣区域(ROI)。

我们如何定义ROI?

在输入帧中定义ROI的过程称为ROI分割。

在“ ROI细分”中,(此处)我们选择框架中的特定区域,并以矩形方法提供其尺寸,以便它将在框架上绘制矩形的ROI。

 

OpenCV

(输出)蓝色矩形覆盖的区域是我们的投资回报率

现在,如果您也想绑定感兴趣的对象,那么我们可以通过在ROI中找到轮廓来实现。

什么是轮廓?

轮廓线是 表示或说是限制对象形状的轮廓。

如何在框架中找到轮廓?

对我而言,在将ROI框架设为阈值后,找到轮廓效果最佳。因此,要找到轮廓,手上的问题是-

什么是阈值?

阈值不过是图像分割的一种简单形式。这是将灰度或rgb图像转换为二进制图像的过程。例如

OpenCV

(这是RGB帧)

OpenCV

(这是二进制阈值帧)

因此,在对rgb帧进行阈值处理后,程序很容易找到轮廓,因为由于ROI中感兴趣对象的颜色将是黑色(在简单的二进制脱粒中)或白色(在如上所述的反向二进制脱粒中),因此分割(将背景与前景即我们的对象分开)将很容易完成。

在对框架进行阈值处理并检测到轮廓之后,我们应用凸包技术对围绕对象点的紧密拟合凸边界进行设置。实施此步骤后,框架应如下所示-

OpenCV

我们可以做的另一件事是,我们可以遮盖ROI以仅显示被检测到的轮廓本身覆盖的对象。再次-

什么是图像MASK?

图像MASK是隐藏图像的某些部分并显示某些部分的过程。这是图像编辑的非破坏性过程。在大多数情况下,它使您可以在以后根据需要调整和调整遮罩。通常,它是一种有效且更具创意的图像处理方式。

因此,基本上在这里我们将掩盖ROI的背景。为此,首先我们将修复ROI的背景。然后,在固定背景之后,我们将从框架中减去背景,并用wewant背景(这里是一个简单的黑色框架)替换它。

实施上述技术,我们应该得到如下输出:

OpenCV

(背景被遮罩以仅捕获对象)

这是所说明技术的理想实现的完整代码。


import cv2import numpy as npimport copyimport math
x=0.5  # start point/total widthy=0.8  # start point/total widththreshold = 60  # BINARY thresholdblurValue = 7  # GaussianBlur parameterbgSubThreshold = 50learningRate = 0
# variablesisBgCaptured = 0   # whether the background captured
def removeBG(frame): #Subtracting the background    fgmask = bgModel.apply(frame,learningRate=learningRate)
    kernel = np.ones((3, 3), np.uint8)    fgmask = cv2.erode(fgmask, kernel, iterations=1)    res = cv2.bitwise_and(frame, frame, mask=fgmask)    return res
# Cameracamera = cv2.VideoCapture(0)camera.set(10,200)


while camera.isOpened():    ret, frame = camera.read()    frame = cv2.bilateralFilter(frame, 5, 50, 100)  # smoothening filter    frame = cv2.flip(frame, 1)  # flip the frame horizontally    cv2.rectangle(frame, (int(x * frame.shape[1]), 0),                 (frame.shape[1], int(y * frame.shape[0])), (255, 0, 0), 2) #drawing ROI    cv2.imshow('original', frame)
    #  Main operation    if isBgCaptured == 1:  # this part wont run until background captured        img = removeBG(frame)        img = img[0:int(y * frame.shape[0]),                    int(x * frame.shape[1]):frame.shape[1]]  # clip the ROI        cv2.imshow('mask', img)
        # convert the image into binary image        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)        blur = cv2.GaussianBlur(gray, (blurValue, blurValue), 0)        cv2.imshow('blur', blur)        ret, thresh = cv2.threshold(blur, threshold, 255, cv2.THRESH_BINARY) #thresholding the frame        cv2.imshow('ori', thresh)

        # get the coutours        thresh1 = copy.deepcopy(thresh)        contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #detecting contours        length = len(contours)        maxArea = -1        if length > 0:            for i in range(length):  # find the biggest contour (according to area)                temp = contours[i]                area = cv2.contourArea(temp)                if area > maxArea:                    maxArea = area                    ci = i
            res = contours[ci]            hull = cv2.convexHull(res) #applying convex hull technique            drawing = np.zeros(img.shape, np.uint8)            cv2.drawContours(drawing, [res], 0, (0, 255, 0), 2) #drawing contours             cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 3) #drawing convex hull            cv2.imshow('output', drawing)
    # Keyboard OP    k = cv2.waitKey(10)    if k == 27:          camera.release()        cv2.destroyAllWindows()        break    elif k == ord('b'):  # press 'b' to capture the background        bgModel = cv2.createBackgroundSubtractorMOG2(0, bgSubThreshold)        isBgCaptured = 1        print( 'Background Captured')    elif k == ord('r'):  # press 'r' to reset the background        bgModel = None        isBgCaptured = 0        print ('Reset BackGround')

 

审核编辑 :李倩


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分