作者简介:
baron (csdn:代码改变世界ctw),九年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。
在默认情况下,本文讲述的都是ARMV8-aarch64架构,linux kernel 5.14
目录
1、RSA 开关
2、RSA 实现
3、其它非对称密码
4、非对称密码算法的使用示例
5、总结
1、RSA 开关
RSA的实现由 CONFIG_CRYPTO_RSA 宏控制,该宏依赖于:
CONFIG_CRYPTO_AKCIPHER
CONFIG_CRYPTO_MANAGER
CONFIG_MPILIB
CONFIG_ASN1
(linux/crypto/Kconfig) config CRYPTO_RSA tristate "RSA algorithm" select CRYPTO_AKCIPHER select CRYPTO_MANAGER select MPILIB select ASN1 help Generic implementation of the RSA public key algorithm.
2、RSA 实现
(linux/crypto/rsa.c) static struct akcipher_alg rsa = { .encrypt = rsa_enc, .decrypt = rsa_dec, .set_priv_key = rsa_set_priv_key, .set_pub_key = rsa_set_pub_key, .max_size = rsa_max_size, .exit = rsa_exit_tfm, .base = { .cra_name = "rsa", .cra_driver_name = "rsa-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct rsa_mpi_key), },};
主要实现了4个功能:
rsasetpriv_key
rsasetpub_key
rsa_enc
rsa_dec
其中 rsa_set_priv_key和 rsa_set_pub_key的实现,主要就是接受raw格式的密钥(DER格密钥),将其转换成nddpq等因子填充到密码学结构体中。rsa_enc和 rsa_dec ,主要就是 公钥加密、私钥解密的这种用法。
此类密码学具体算法的实现,都是由 linux/lib/mpi 第三方libary实现的,是一种C语言的实现方式。
3、其它非对称密码
(1)、实现了3个ecdsa的密码算法
ecdsanistp192
ecdsanistp256
ecdsanistp384
以为ecdsanistp192 为例:
(linux/crypto/ecdsa.c) static struct akcipher_alg ecdsa_nist_p192 = { .verify = ecdsa_verify, .set_pub_key = ecdsa_set_pub_key, .max_size = ecdsa_max_size, .init = ecdsa_nist_p192_init_tfm, .exit = ecdsa_exit_tfm, .base = { .cra_name = "ecdsa-nist-p192", .cra_driver_name = "ecdsa-nist-p192-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecc_ctx), },};
仅仅实现了两个接口函数:
ecdsa_verify : 公钥验签
ecdsasetpub_key :导入公钥
(2)、实现了1个sm2的密码算法
(linux/crypto/sm2.c) static struct akcipher_alg sm2 = { .verify = sm2_verify, .set_pub_key = sm2_set_pub_key, .max_size = sm2_max_size, .init = sm2_init_tfm, .exit = sm2_exit_tfm, .base = { .cra_name = "sm2", .cra_driver_name = "sm2-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct mpi_ec_ctx), },};
仅仅实现了两个接口函数:
sm2_verify : 公钥验签
sm2setpub_key :导入公钥
(3)、实现了1个ecr的密码算法
(linux/crypto/ecrdsa.c) static struct akcipher_alg ecrdsa_alg = { .verify = ecrdsa_verify, .set_pub_key = ecrdsa_set_pub_key, .max_size = ecrdsa_max_size, .exit = ecrdsa_exit_tfm, .base = { .cra_name = "ecrdsa", .cra_driver_name = "ecrdsa-generic", .cra_priority = 100, .cra_module = THIS_MODULE, .cra_ctxsize = sizeof(struct ecrdsa_ctx), },};
仅仅实现了两个接口函数:
ecrdsa_verify : 公钥验签
ecrdsasetpub_key :导入公钥
4、非对称密码算法的使用示例
如下所示,实现了 public_key_verify_signature(key,signature), 这个函数的实现,也被export出来,相当于又封装了一层。另外其它模块如果有对非对称密码学算法的需求,也可以直接调用非对称密码学算法的API,例如直接调用如下这样的函数:
crypto_akcipher_verify()
crypto_akcipher_set_pub_key()
如下是 public_key_verify_signature(key,signature)的实现,也可以当作非对称密码学算法的使用示例:
(linux/crypto/asymmetric_keys/public_key.c) /* * Verify a signature using a public key. */int public_key_verify_signature(const struct public_key *pkey, const struct public_key_signature *sig){ struct crypto_wait cwait; struct crypto_akcipher *tfm; struct akcipher_request *req; struct scatterlist src_sg[2]; char alg_name[CRYPTO_MAX_ALG_NAME]; char *key, *ptr; int ret; pr_devel("==>%s() ", __func__); BUG_ON(!pkey); BUG_ON(!sig); BUG_ON(!sig->s); ret = software_key_determine_akcipher(sig->encoding, sig->hash_algo, pkey, alg_name); if (ret < 0) return ret; tfm = crypto_alloc_akcipher(alg_name, 0, 0); if (IS_ERR(tfm)) return PTR_ERR(tfm); ret = -ENOMEM; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) goto error_free_tfm; key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen, GFP_KERNEL); if (!key) goto error_free_req; memcpy(key, pkey->key, pkey->keylen); ptr = key + pkey->keylen; ptr = pkey_pack_u32(ptr, pkey->algo); ptr = pkey_pack_u32(ptr, pkey->paramlen); memcpy(ptr, pkey->params, pkey->paramlen); if (pkey->key_is_private) ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen); else ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen); if (ret) goto error_free_key; if (sig->pkey_algo && strcmp(sig->pkey_algo, "sm2") == 0 && sig->data_size) { ret = cert_sig_digest_update(sig, tfm); if (ret) goto error_free_key; } sg_init_table(src_sg, 2); sg_set_buf(&src_sg[0], sig->s, sig->s_size); sg_set_buf(&src_sg[1], sig->digest, sig->digest_size); akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size, sig->digest_size); crypto_init_wait(&cwait); akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &cwait); ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait); error_free_key: kfree(key);error_free_req: akcipher_request_free(req);error_free_tfm: crypto_free_akcipher(tfm); pr_devel("<==%s() = %d ", __func__, ret); if (WARN_ON_ONCE(ret > 0)) ret = -EINVAL; return ret;}EXPORT_SYMBOL_GPL(public_key_verify_signature);
5、总结
Linux Kernel非对称密码算法的实现总结如下:
实现了RSA的:“导入公钥、导入私钥、公钥加密私钥解密” 功能
实现了ecdsa的:”导入公钥、公钥验签” 功能
实现了sm2的:”导入公钥、公钥验签” 功能
实现了ecr的:”导入公钥、公钥验签” 功能
原文标题:Linux Kernel中非对称密码算法的实现
文章出处:【微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。
全部0条评论
快来发表一下你的评论吧 !