然而,实施启停系统给汽车电子设备 (E/E) 制造商带来了几个问题。交流发电机是安装在引擎盖下的发电机,它为 E/E 供电并为铅蓄电池充电。由于交流发电机是由内燃机驱动的,因此在停止启动中的 E/E 会遇到功率使用限制和暂时的电压下降。
当发动机在红绿灯处停止工作,同时交流发电机也停止工作时,会出现用电限制。因此,E/E 的功耗受到严格限制,因为它们仅由铅电池供电。
当发动机再次开始工作时,会出现暂时的电压下降。交流发电机也重新开始工作。由于交流发电机在启动时会从铅电池中汲取大量电流,因此 E/E 会遭受暂时的电压下降——在红绿灯处重新启动时电压通常会下降到 6 V。最严重的下降(称为冷启动,可下降至 3 V)发生在发动机油因寒冷天气变稠时。
图 1.汽车智能充电子系统的典型实现。
为了解决这两个问题,E/E 设计人员通常会实施本身会引入其他问题的解决方案。例如,原始设备制造商 (OEM) 可以通过在交流发电机关闭时关闭一些 E/E 来限制 E/E 操作以节省电力。然而,这意味着失去了一些功能,并且可能会让司机感到不舒服。当发动机控制单元 (ECU) 发现电池电量不足时,它不会关闭发动机以保持交流发电机开启,从而导致 CO 2排放量增加。OEM 还可以选择安装笨重且昂贵的组件来承受电压降。例如,通常会安装一个低通滤波器以在重启期间维持电源电压,但该滤波器通常很大且成本很高。
这些传统方法的替代方法是使用 降压-升压开关模式电源管理 IC ,例如赛普拉斯 S6BP202A。降压-升压方法从下降的电池电压生成电源轨。因此,即使电池电压降至 2.5 V,电源管理 IC (PMIC) 也能够产生 5 V 电源轨,而无需笨重且成本高昂的低通滤波器(图 2)。因此,可以更频繁地关闭发动机和交流发电机,从而减少二氧化碳排放。由于 PMIC 自身消耗的功率很小 (20 μA)(图 3),因此它允许在有限的功率容量内进行更多基于 E/E 的工作。
图 2.即使电池电压低至 2.5 V,降压-升压开关模式 PMIC 也可以维持 5 V 电压轨。
图 3.降压-升压开关模式电源管理 IC 仅消耗 20 μA。
过去,降压-升压开关模式电源系统尚未用于汽车应用。然而,为消费类应用开发的升降压技术的进步为汽车应用打开了大门。无缝开关技术可抑制从降压模式到升压模式以及从升压模式到降压模式的状态变化中的电压变化。对功率效率的推动导致低静态电流。集成的精确电压监控器提高了系统可靠性,并且在 2 MHz 开关频率下运行可确保子系统不会干扰 AM 无线电。最后,工厂预设电压降低了由污染和/或冷凝引起的电压变化风险。
总结这篇文章,考虑一个典型的中档仪表组(图 4),它包括几个仪表(例如,速度表、转速表等)、一个段式 LCD(例如,行程表)、一个蜂鸣器、一些信号装置和通信接口(例如,CAN)。仪表板配备 S6BP202A 作为 PMIC 和 S6J3120 微控制器 (MCU)。
尽管电池电压可能会在 + 2.5 V 至 + 42 V 之间变化,并且汽车可能会遇到北极天气 (-40 °C) 或酷热 (+125 °C),但 S6BP202A 仍会持续产生稳定的 +5 V 电源轨适用于所有条件下的 S6J3120。
图 4.典型的中低集群系统
作者:Leona Okamura,Yukinori Maekawa
审核编辑:郭婷
全部0条评论
快来发表一下你的评论吧 !