OpenVINO2022 Dev Tools安装与使用

描述

 

 

引言

OpenVINO2022版本发布之后,对之前旧版本的功能做明确的划分,其中仍然通过exe方式安装程序的是runtime推理包,支持ONNX、IR、PADDLE等模型读取与推理。但是模型优化转换、模型库下载功能等其他功能被分在一个叫Dev Tool的部分。该部分可以通过pip方式直接安装,然后通过命令行直接直线,完成模型的转换,下载等操作,跟之前版本易用性有较大提升!做个对比如下:

脚本

Dev Tools安装与使用

Dev Tools安装非常方便,直接通过官方脚本命令行选择安装即可,唯一需要注意的是选择模型框架支持,我选择了ONNX/Pytorch格式转换支持,安装的命令行如下:
pip install openvino-dev[onnx,pytorch]==2022.1.0
 执行完这条命令行就算是安装好了,只要网络不挂就可以安装成功!  安装完成,转换一个ONNX格式的模型为IR格式(xml/bin)文件,以Pytorch的ResNet18为例,先转换为ONNX,代码如下:
model = models.resnet18(pretrained=True) model.eval() model.cpu()
 dummy_input1 = torch.randn(1, 3, 224, 224) torch.onnx.export(model, (dummy_input1), "resnet_model.onnx", verbose=True)

 

然后直接运行命令行就可以转换IR格式文件,截图如下:

脚本

脚本

 

模型下载

安装完成Dev Tools之后,下载模型,只要执行命令行即可:举例如下:
omz_downloader --name person-detection-0200
 表示下载模型 person-detection-0200 是一个轻量化的人脸检测模型。omz_downloader 支持的参数:
--all表示下载全部模型,建议别这么干!--name 下载一个或者多个指定名称的模型,推荐这么干!--precisions 表示下载的模型精度参数,支持FP32/FP18/INT8
 

脚本

 

Python SDK使用

对比之前Python版本的SDK,好用了不少,最明显的感受就是不用读输入输出,然后一堆设置了,对单个输入输出的网络,调用就特别的简洁更方便!开发者更加容易上手!上面我已经成功转换一个pytorch图像分类模型为IR格式,现在就可以使用它,基于OpenVINO2022版本最新Python SDK部署调用,实现代码如下:
# 加载标签数据
with open('imagenet_classes.txt'as f:
    labels = [line.strip() for line in f.readlines()]


def resnet_demo():
    ie = Core()
    # model = ie.read_model(model="resnet_model.onnx")
    model = ie.read_model(model="resnet_model.xml")
    compiled_model = ie.compile_model(model=model, device_name="CPU")

    output_layer = compiled_model.output(0)

    means = np.zeros((2242243), dtype=np.float32)
    means[: ,:] = (0.4850.4560.406)
    dev = np.zeros((2242243), dtype=np.float32)
    dev[: ,:] = (0.2290.2240.225)

    image = cv.imread("D:/images/space_shuttle.jpg")
    rgb = cv.cvtColor(image, code=cv.COLOR_BGR2RGB)

    # resize to MobileNet image shape
    input_image = cv.resize(src=rgb, dsize=(224224))
    blob_img = np.float32(input_image) / 255.0
    input_x = (blob_img - means) / dev
    input_x = input_x.transpose((201))
    input_x = np.expand_dims(input_x, 0)
    print(input_x.shape)

    result_infer = compiled_model([input_x])[output_layer]
    result_index = np.argmax(result_infer)
    cv.putText(image, labels[result_index], (2050), cv.FONT_HERSHEY_SIMPLEX, 1.0, (00255), 2)

    cv.imshow("OpenVINO2022 + Pythorch ResNet18", image)
    cv.waitKey(0)
    cv.destroyAllWindows()


if __name__ == "__main__":
    resnet_demo()
 

 

审核编辑 :李倩

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分