如何将流解析技术应用于JSON处理

描述

如果你需要在 Python 中处理一个大的 JSON 文件,会很容易出现耗尽内存的情况。即使原始数据大小小于内存容量,Python 也会进一步增加内存使用量。这意味着程序会在与磁盘交互时处理缓慢,或在内存不足时崩溃。

一种常见的解决方案是流解析,也就是惰性解析、迭代解析或分块处理。让我们看看如何将此技术应用于 JSON 处理。

问题:Python中加载JSON内存效率低

我们使用这个大小为24MB的JSON文件来举例,它在加载时会对内存产生明显的影响。这个JSON对象是在GitHub中,用户对存储库执行操作时的事件列表:

[{"id":"2489651045","type":"CreateEvent","actor":
{"id":665991,"login":"petroav","gravatar_id":"","url":"https://api.github.com/users/petroav","avatar_url":"https://avatars.githubusercontent.com/u/665991?"},"repo":
{"id":28688495,"name":"petroav/6.828","url":"https://api.github.com/repos/petroav/6.828"},"payload":
{"ref":"master","ref_type":"branch","master_branch":"master","description":"Solution to homework and assignments from MIT's 6.828 (Operating Systems Engineering). Done in my spare time.","pusher_type":"user"},"public":true,"created_at":"2015-01-01T1500Z"},
...
]

我们的目标是找出给定用户在与哪些存储库进行交互。下面是一个简单的 Python 程序:

import json

with open("large-file.json""r") as f:
    data = json.load(f)

user_to_repos = {}
for record in data:
    user = record["actor"]["login"]
    repo = record["repo"]["name"]
    if user not in user_to_repos:
        user_to_repos[user] = set()
    user_to_repos[user].add(repo)

输出结果是一个用户名映射到存储库名称的字典。我们使用 Fil 内存分析器运行它时,可以发现内存使用的峰值达到了124MB,还可以发现两个主要的内存分配来源:

  1. 读取文件
  2. 将生成的字节解码为 Unicode 字符串

python

但我们加载的原始文件是24MB。一旦我们将它加载到内存中并将其解码为文本 (Unicode)Python 字符串,它需要的空间远远超过 24MB。这是为什么?

扩展知识:Python字符串的内存表示

Python字符串在表示时会被更少使用内存的方法优化。每个字符串都有固定的开销,如果字符串可以表示为 ASCII,则每个字符只使用一个字节的内存。如果字符串使用更多扩展字符,则每个字符可能使用4个字节。我们可以使用 sys.getsizeof() 查看一个对象需要多少内存:

>>> import sys
>>> s = "a" * 1000
>>> len(s)
1000
>>> sys.getsizeof(s)
1049

>>> s2 = "" + "a" * 999
>>> len(s2)
1000
>>> sys.getsizeof(s2)
2074

>>> s3 = "" + "a" * 999
>>> len(s3)
1000
>>> sys.getsizeof(s3)
4076

在上面的例子中3个字符串都是 1000 个字符长,但它们使用的内存量取决于它们包含的字符。

在本例中我们的大JSON 文件里包含不适合ASCII编码的字符,正是因为它是作为一个巨大的字符串加载的,所以整个巨大的字符串会使用效率较低的内存表示。

流处理解决方案

很明显,将整个JSON文件直接加载到内存中是一种内存浪费。

对一个结构为对象列表的 JSON 文件,理论上我们可以一次解析一个块,而不是一次全部解析,以此来减少内存的使用量。目前有许多 Python 库支持这种 JSON 解析方式,下面我们使用 ijson 库来举例。

import ijson

user_to_repos = {}

with open("large-file.json""r") as f:
    for record in ijson.items(f, "item"):
        user = record["actor"]["login"]
        repo = record["repo"]["name"]
        if user not in user_to_repos:
            user_to_repos[user] = set()
        user_to_repos[user].add(repo)

如果使用json标准库,数据一旦被加载文件就会被关闭。而使用ijson,文件必须保持打开状态,因为当我们遍历记录时,JSON 解析器正在按需读取文件。有关更多详细信息,请参阅 ijson 文档。

在内存分析器运行它时,可以发现内存使用的峰值降到了3.6MB,问题解决了!而且在此例子中,使用 ijson 的流式处理也会提升运行时的性能,当然这个性能取决于数据集或算法。

python

其他解决方法

  • Pandas:Pandas 具有读取 JSON 的能力,理论上它可以以更节省内存的方式读取。
  • SQLite:SQLite 数据库可以解析 JSON,将 JSON 存储在列中,以及查询 JSON数据。因此,可以将 JSON 加载到磁盘支持的数据库文件中,并对它运行查询来提取相关的数据子集。

最后,如果可以控制输出格式,则可以通过切换到更高效的表示来减少 JSON 处理的内存使用量。例如,从单个巨大的 JSON 对象列表切换到每行一条 JSON 记录,这意味着每条解码的 JSON 记录将只使用少量内存。

知识延伸

前段时间,Python开发者公号推荐了一款很实用的 JSON 工具,可以更轻松直观地查看 JSON。

 

原文标题:Python 处理超大 JSON 文件,这个方法简单!

文章出处:【微信公众号:Linux爱好者】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分