分享一种新颖但简单的高密度平面外微针阵列制造方法

描述

微型针头阵列可以输送药物,而不会引起疼痛,这是因为微针可以在有限的穿透深度下到达表皮层,而不会刺激与疼痛和组织损伤相关的真皮层。因此,各种形状的微针已被用于多种药物的经皮递送,甚至包括重组COVID-19疫苗。微针应用范围广,如血管、囊泡、角膜、心脏和植物。此外,微针结构已广泛应用于现代神经科学和神经工程领域。

近期,韩国科学技术研究院Maesoon Im团队在Nano-Micro Letters期刊上发表题为“Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes”的论文,报告了一种新颖但简单的高密度平面外微针阵列制造方法,该阵列可以具有任意高度和不同的横截面形状,具体取决于光掩模图案设计。通过优化制造工艺可以进一步提高密度和纵横比。

此外,微针的最终横截面形状由第一次深反应离子刻蚀(DRIE)中要蚀刻的区域的形状和分布控制,并且可以通过简单地修改光掩模设计来进一步改变。通过使用琼脂糖凝胶和小鼠大脑对微针进行插入测试,制造的微针阵列每根微针仅需172µN即可穿透小鼠大脑。为了证明药物输送应用的可行性,研究人员还使用成型工艺实施了丝微针阵列。该研究的制造方法有望广泛适用于制造用于药物输送、神经修复装置等的微针结构。

DRIE

研究人员首先利用各向异性蚀刻工艺创建了微孔(图1)和微针(图2)结构并进行了表征。图2显示了硅结构随着各向同性蚀刻的进行而逐渐变化,最终变成锋利的微针。由于增强的横向蚀刻,各向同性蚀刻的早期阶段加宽了微孔。当相邻的加宽微孔相互接触时,这些界面区域被进一步垂直蚀刻以形成桥谷。随着各向同性蚀刻的继续,桥谷的高度降低,微针的钝尖变尖。

DRIE

图1 各向异性蚀刻(第一次DRIE)工艺创建的微孔结构表征。

DRIE

图2 各向同性蚀刻(第二次DRIE)过程中的Si几何形状的示意图和SEM图像以锐化微针。

研究显示,连续的各向同性蚀刻导致微针更短,从而降低了它们的纵横比。增加微孔的直径可以提高纵横比,但会使间距变大,从而降低微针阵列的密度。为了实现微针的高纵横比和高密度,研究人员设计了一种哑铃形微孔光掩模图案。

DRIE

图3 使用哑铃孔光掩模图案制造高纵横比微针。

在神经工程应用中,不同高度(或长度)的平面外微针整体结合起来一直是个挑战。为了覆盖3D神经组织(如皮层、视网膜和神经纤维)中的可变穿透深度,有必要以精确设计的方式将不同高度的微针集成在一起。

DRIE

图4 在单个晶片上以各种高度分布制造微针。

微针阵列的另一个重要设计特征是密度。作为一种穿透性神经接口,更高密度的微针将单独进入密集的神经元或神经纤维,从而对复杂空间神经相互作用的机制进行更复杂的研究。为了探索这种高密度是否可以实现,设计了具有三种不同微孔直径和间隙组合的哑铃孔阵列。

DRIE

图5 使用哑铃井模式的高密度微针阵列。

为了评估制造的锋利微针实际使用的可行性,研究人员测量了将微针插入组织模型和小鼠大脑所需的力。

DRIE

图6 将制造的微针阵列插入模拟脑组织的琼脂糖凝胶中进行。

DRIE

图7 将制造的微针阵列插入小鼠大脑的测试。

由于微针的形状与施加于皮肤或脑组织的应力直接相关,因此各种类型的微针的开发将拓宽研究人员对作为科学工具的穿透力学的理解。通过优化的横截面形状,可以最大限度地减少与皮肤的接触面积,从而降低穿刺阻力并更容易插入。本文探讨了是否可以通过光掩模图案改变微针的横截面形状。为了实现微针阵列的各种横截面形状,研究人员测试了八种不同的光掩模设计,它们具有不同的微孔开口图案及其空间分布。

DRIE

 

DRIE


 

图8 通过各种光掩模设计制造具有不同横截面形状的微针。

为了证明有可能用作药物输送平台或可生物降解的微针贴片,探索了硅微针阵列是否可以使用成型工艺扩展到其他聚合物材料。传递模塑工艺可适用于其他类型的可生物降解和生物相容性材料。此外,微针的进一步高度调制有望通过无痛穿透角质层更有效地将药物输送到表皮或真皮上层。

DRIE

图9 通过传递模塑技术制造丝绸微针。

综上所述,研究人员通过使用单个光刻和两个后续DRIE工艺来制备具有各种横截面形状和不规则高度分布的硅微针阵列。光刻后的第一个高度各向异性的DRIE步骤在硅晶片中创建了微孔作为阵列。在第二个DRIE步骤中,随后进行更多的各向同性蚀刻分离和锐化微针。通过优化制造工艺可以进一步提高密度和纵横比。此外,微针的最终横截面形状由第一次DRIE中要蚀刻的区域的形状和分布控制,并且可以通过简单地修改光掩模设计来进一步改变。通过使用琼脂糖凝胶和小鼠大脑对微针进行插入测试,制造的微针阵列每根微针仅需172µN即可穿透小鼠大脑。总而言之,研究人员的新制造方法可以促进用于各种应用的微针阵列的制造,包括药物输送、神经生理学/神经修复研究等。使用成熟的半导体制造工艺有望在大面积上制造微针。


审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分